3’-UTR polymorphisms of SETD7 gene associate with economic traits in an F2 population between Landrace and Jeju (Korea) Black pigs

DOI: 10.18805/ijar.v0iOF.6991    | Article Id: B-496 | Page : 441-444
Citation :- 3’-UTR polymorphisms of SETD7 gene associate with economic traits in an F2 population between Landrace and Jeju (Korea) Black pigs.Indian Journal Of Animal Research.2019.(53):441-444
Sang-Hyun Han, Yong-Jun Kang, Dong Kee Jeong and In-Cheol Cho hansh04@naver.com
Address : Subtropical Livestock Research Institute, National Institute of Animal Science RDA, 63242 Jeju, Republic of Korea.
Submitted Date : 19-04-2016
Accepted Date : 21-10-2016

Abstract

In order to reveal the association between genotypes of SET domain-containing protein 7; Histone H3-lysine 4-specific methyltransferase (SETD7) gene and economic traits in pigs, this study tested the association between SNP (single nucleotide polymorphism) genotypes of 3’-untranslated region of SETD7 g.1354C>T and growth and carcass traits in a resource population of the crossbred Landrace × Jeju Black pig (JBP). SETD7 T- pigs showed significantly thicker back fat levels than those of CC homozygotes (P<0.05). However, the levels of average daily gains, body weights, loin muscle area, marbling score, and meat colors did not show significant association (P>0.05). These results reveal faster growth rates in the late period of production, especially backfat deposition at the subcutaneous region according to genotypes of the SETD7 gene. These findings indicate that SETD7 genotypes may involve fat deposition or adipocyte differentiation and assist as molecular genetic markers for improving the JBP-related crossbreeding systems.

Keywords

Association Economic traits Genotype SETD7 Jeju Black pig.

References

  1. Edwards, D. B., Ernst, C. W., Tempelman, R. J., Rosa, G. J. M., Raney, N. E., Hoge, M. D. and Bates, R. O. (2008). Quantitative trait loci mapping in an F2 Duroc × Pietrain resource population: I. Growth traits. J Anim Sci. 86: 241-253.
  2. Han, S. H., Shin, K. Y., Lee, S. S., Ko, M. S., Jeong, D. K., Oh, H. S., Yang, B. C. and Cho, I. C. (2010). SINE indel polymorphism of AGL gene and association with growth and carcass traits in Landrace × Jeju black pig F2 population. Mol Biol Rep. 37: 467-471.
  3. Jackson, J. P., Lindroth, A. M., Cao, X. and Jacobson, S. E. (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methylatransferase. Nature 416: 556-560.
  4. Kalinowski, S. T., Taper, M. L. and Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 16: 1099-1106.
  5. Kouzarides, T. (2002). Histone methylation in transcriptional control. Curr Opin Genet Dev. 12: 198-209.
  6. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128: 693-705.
  7. Liu, M., Peng, J., Xu, D. Q., Zheng, R., Li, F. E., Li, J. L., Zuo, B., Lei, M. G., Xiong, Y. Z., Deng, C. Y. and Jiang, S. W. (2008). Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White x Meishan F2 pig populations. Biochem Genet. 46: 720-732.
  8. Lee, Y. H., Kwon, E. J., Cho, E. S., Park, D. H., Kim, B., Park, H. C., Park, B. Y., Jang, I. S., Choi, J., Bang, W. Y. and Kim, C. W. (2011). Association analysis of polymorphism in KIAA1717, HUMMLC2B, DECR1 and FTO genes with meat quality traits of the Berkshire breed. Afr J Biotechnol. 10: 5068-5074.
  9. Mal, A. K. (2006). Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation. EMBO J. 25: 3323-3334.
  10. Peterson, C. L. and Laniel, M. A. (2004). Histones and histone modifications. Curr Biol. 14: R546-R551.
  11. Muñoz, M., Rodríguez, M. C., Alves, E., Folch, J. M., Ibañez-Escriche, N., Silió, L. and Fernández, A. I. (2013). Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics 14: 845. 
  12. Reiner, G., Clemens, N., Fischer, R., Köhler, F., Berge, T., Hepp, S. and Willems, H. (2008). Mapping of quantitative trait loci for clinical-chemical traits in swine. Anim Genet. 40: 57-64.
  13. Revilla, M., Ramayo-Caldas, Y., Castelló, A., Corominas, J., Puig-Oliveras, A., Ibáñez-Escriche, N., Muñoz, M., Ballester, M. and Folch, J. M. (2014). New insight into the SSC8 genetic determination of fatty acid composition in pigs. Genet Sel Evol. 46: 28.
  14. Rohrer, G. A. (2000). Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White Composite resource population. J Anim Sci. 78: 2547-2553.
  15. Ropka-Molik, K., Eckert, R. and Piórkowska, K. (2010). The expression pattern of myogenic regulatory factors MyoD, Myf6 and Pax7 in postnatal porcine skeletal muscles. Gene Expr Patterns. 11: 79-83.
  16. SAS program package. (1999). SAS/STAT software for PC. Release 8.01. SAS Institute Inc, Cary, NC, USAT amaru, H. and Selker, E. U. (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277-283.
  17. Tao, Y., Neppl, R. N., Huang, Z. P., Chen, J., Tang, R., Cao, R., Zhang, Y., Jin, S. and Wang, D. (2011). The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J Cell Biol. 194: 551-565.
  18. te Pas, M. F., Soumillion, A., Harders, F. L., Verburg, F. J., van den Bosch, T. J., Galesloot, P. and Meuwissen, T. H. (1999). Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J Anim Sci. 77: 2352-2356.
  19. Verner, J., Humpolícek, P. and Knoll, A. (2007). Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J Anim Breed Genet. 124: 81-85.
  20. Wattrang, E., Almqvist, M., Johansson, A., Fossum, C., Wallgren, P., Pielberg, G., Andersson, L. and Edfors-Lilja, I. (2005). Confirmation of QTL on porcine chromosomes 1 and 8 influencing leukocyte numbers, haematological parameters and leukocyte function. Anim Genet. 36: 337-345.
  21. Xiong, Q., Chai, J., Zhang, P. P., Wu, J., Jiang, S. W., Zheng, R. and Deng, C. Y. (2011). MyoD control of SKIP expression during pig skeletal muscle development. Mol Biol Rep. 38: 267-274.
  22. Xu, D. Q., Liu, M., Xiong, Y. Z., Deng, C. Y., Jiang, S. W., Li, J. L., Zuo, B., Lei, M. G., Li, F. and Zheng, R. (2007). Identification of polymorphisms and association analysis with meat quality traits in the porcine KIAA1717 and HUMMLC2B genes. Livest Sci. 106: 96-101.
  23. Xu, D. Q., Xiong, Y. Z., Liu, M., Lan, J., Ling, X. F., Deng, C. Y. and Jiang, S. W. (2005). Association analyses with carcass traits in the porcine KIAA1717 and HUMMLC2B genes. Asian Australas J Anim Sci. 18: 1519-1523.
  24. Yoo, C. K., Cho, I. C., Lee, J. B., Jung, E. J., Lim, H. T., Han, S. H., Lee, S. S., Ko, M. S., Kang, T., Hwang, J. H., Park, Y. S. and Park, H. B. (2012). QTL analysis of clinical-chemical traits in an F2 intercross between Landrace and Korean native pigs. Physiol Genomics. 44: 657-668.
  25. Zhao, X., Mo, D., Li, A., Gong, W., Xiao, S., Zhang, Y., Qin, L., Niu, Y., Guo, Y., Liu, X., Cong, P., He, Z., Wang, C., Li, J. and Chen, Y. (2011). Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS One 6: e19774.

Global Footprints