Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus

Sensitivity Pattern of Staphylococcus aureus Isolates from Different Sources for Methicillin, Vancomycin, β-lactamase and ESBL Production

Aarti Nirwan, Shahid Khan, Jayesh Vyas, A.K. Kataria
Background: Staphylococcus aureus has the ability to develop many efficient mechanisms to neutralize them and it has become difficult to control the virulent strains of S. aureus from causing staphylococcal diseases in animals and humans. Mostly Staphylococcal strains have become resistant to methicillin, β-lactamase and ESBL activity and sometime to vancomycin also. The present study investigated the phenotypic and genotypic characteristics of all the 62 S. aureus isolates for sensitivity towards methicillin, b-lactamase, ESBL production and vancomycin.
Methods: The isolates were obtained by conventional microbiological methods, confirmed genotypically by 23S rRNA ribotyping and Maldi-Tof MS. Methicillin resistance activity among S. aureus isolates was detected by culturing them on MeReSa Agar. Extended-spectrum b-lactamase activity among S. aureus isolates was detected by the combined disc method.
Result: On MeReSa agar, 53(85.48%) isolates were detected as methicillin resistant S. aureus (MRSA), but none of the isolates from any source or place of sampling was detected positive by the methicillin disk method. Extended-spectrum b-lactamase (ESBL) activity was exhibited by 51 (82.25%) isolates with 100% (maximum) isolates from human pus showing activity and 66.66% (least activity) was seen in isolates from unprocessed meat. All the isolates were susceptible to vancomycin.

  1. Alwash, S.J. and Saleh, D.S. (2013). Comparison between cefoxitin disk diffusion, crome agar and epi-m screening kit for detection of methicillin-resistant Staphylococcus aureus. Iraqi Journal of Science. 54: 847-850.

  2. Ateba, C.N., Mbewe, M., Moneoang, M.S. and Bezuidenhout, C.C. (2010). Antibiotic-resistant Staphylococcus aureus isolated  from milk in the mafikeng area, north west province, South Africa. South African Journal of Science. 106: 1-6.

  3. Bagcigil, A.F., Taponen, S., Koort, J., Bengtsson, B., Myllyniemi, A.L. and Pyörälä, S. (2012). Genetic basis of penicillin resistance of S. aureus isolated in bovine mastitis. Acta Veterinaria Scandinavica. 54: 1-7.

  4. Bhattacharyya, D., Banerjee, J., Bandyopadhyay, S., Mondal, B., Nanda, P.K., Samanta, I., Mahanti, A., Das, A.K., Das, G., Dandapat, P. and Bandyopadhyay, S. (2016). First report on vancomycin-resistant Staphylococcus aureus in bovine and caprine milk. Microbial Drug Resistance. 22: 675-681.

  5. Brody, T., Yavatkar, A.S., Lin, Y., Ross, J., Kuzin, A., Kundu, M. and Odenwald, W.F. (2008). Horizontal gene transfers link a human MRSA pathogen to contagious bovine mastitis bacteria. PloS One. 3: e3074.

  6. Capurro, A., Aspán, A., Ericsson Unnerstad, H., PerssonWaller, K. and Artursson, K. (2010). Identification of potential sources of Staphylococcus aureus in herds with mastitis problems. Journal of Dairy Science. 93: 180-191.

  7. Cowan, S.T. and Steel, K.J. (2003). Cowan and Steel’s Mannual for the Identification of Medical Bacteria. Cambridge University Press, Cambridge.

  8. Fitzgerald, J.R. Sturdevant, D.E., Mackie, S.M., Gill, S.R. and Musser, J.M. (2001). Evolutionary genomics of Staphylococcus aureus: Insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proceedings  of the National Academy of Sciences. 98: 8821-8826.

  9. Gopalakrishnan, R. and Sureshkumar, D. (2010). Changing trends in antimicrobial susceptibility and hospital acquired infections over an 8 year period in a tertiary care hospital in relation to introduction of an infection control programme. Journal of Association Physicians India. 58: 25-31.

  10. Livermore, D.M. and Brown, D.F.J. (2001). Detection of β-lactamase mediated resistance. Journal of Antimicrobial Chemotherapy. 48: 59-64.

  11. Lowy, F.D. (2003). Antimicrobial resistance: The example of Staphylococcus aureus. Journal of Clinical Investigation. 111: 1265-1273.

  12. Marques, V.F., Motta, C.C.D., Soares, B., Melo, D.A., Coelho, S.D.,  De, M., De, O., Coelho, I., Da, S., Souza, M.M., De, S. (2017). Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis. Brazilian Journal of Microbiology. 48: 118-124.

  13. Oliveira, A.P. Watts, J.L. Salmon, S.A. and Aarestrup, F.M. (2000). Antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Europe and the United States. Journal of Dairy Science. 83: 855-862.

  14. Patel, A.K., Patel, K.K., Patel, K.R., Shah, S. and Dileep, P. (2010). Time trends in the epidemiology of microbial infections at a tertiary care center in west India over last 5 years. J. Assoc Physicians India. 58: 37-40.

  15. Pantosti, A. Sanchini, A. and Monaco, M. (2007). Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiology. 2: 323-334.

  16. Pitkala, A. Salmikivi, L. Bredbacka, P. Myllyniemi, A.L. and Koskinen, M.T. (2007). Comparison of tests for detection of β-lactamase producing staphylococci. Journal of Clinical Microbiology. 45: 2031-2033.

  17. Quinn, P.J. Carter, M.E. Markey, B.K. and Carter, G.R. (1994). Staphylococcus species. Clinical Veterinary Microbiology. Mosby, Edinburgh. 118-126.

  18. Ray, P., Manchanda, V., Bajaj, J., Chitnis, D., Gautam, V., Goswami, P. and Kapil, A. (2013). Methicillin resistant Staphylococcus  aureus (MRSA) in India: Prevalence and susceptibility pattern. The Indian Journal of Medical Research. 137: 363-369.

  19. Robles, B.F., Nóbrega, D.B., Guimarães, F.F., Wanderley, G.G. and Langoni, H. (2014). Beta-lactamase detection in Staphylococcus aureus and coagulase negative Staphylococcus isolated from bovine mastitis. Pesquisa Veterinária Brasileira. 34: 325-328.

  20. Russi, N.B., Bantar, C. and Calvinho, I.F. (2008). Antimicrobial susceptibility of Staphylococcus aureus causing bovine mastitis in Argentine dairy herds. Revista Argentina de Microbiología. 40: 116-119.

  21. Sayed, S.M. (2014). Bacteriological study on staphylococcal bovine clinical mastitis with reference to methicillin-resistant Staph. aureus (MRSA). Assiut Veterinary Medical Journal. 60: 38-46.

  22. Singh, A. Joshi, R.K. Joshi, N. and Singh, P. (2018). Isolation and identification of multidrug resistant and methicillin resistant Staphylococcus aureus from bovine. International Journal of Current Microbiology and Applied Sciences. 230-238.

  23. Tenover, F.C. Weigel, L.M. Appelbaum, P.C. McDougal, L.K. Chaitram, J. McAllister, S. Clark, N. Killgore, G. O’Hara, C.M. Jevitt, L., Patel, J.B., Bozdogan, B. (2004). Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrobial Agents and Chemotherapy. 48: 275-280.

  24. Turutoglu, H., Ercelik, S. and Ozturk, D. (2006). Antibiotic resistance of Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis. Bulletin of the Veterinary Institute in Pulawy. 50: 41-45.

  25. Yadav, R., Sharma, S.K., Yadav, J., Nathawat, P. and Kataria, A.K. (2015). Phenotypic and genotypic characterization of Staphylococcus aureus of mastitic milk origin from cattle and buffalo for some virulence properties. Journal of Pure and Applied Microbiology. 9: 425-431.

Editorial Board

View all (0)