Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.43

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 56 issue 8 (august 2022) : 933-940

Character-based Diagnostic Keys, Molecular Identification and Phylogenetic Relationships of Fishes based on Mitochondrial Gene from Pulicat Lake, India: A Tool for Conservation and Fishery Management Purposes

A. Rathipriya, A. Kathirvelpandian, S.A. Shanmugam, A. Uma, E. Suresh, N. Felix
1ICAR-National Bureau of Fish Genetic Resources, PMFGR Centre, Kochi-682 018, Kerala, India.
Cite article:- Rathipriya A., Kathirvelpandian A., Shanmugam S.A., Uma A., Suresh E., Felix N. (2022). Character-based Diagnostic Keys, Molecular Identification and Phylogenetic Relationships of Fishes based on Mitochondrial Gene from Pulicat Lake, India: A Tool for Conservation and Fishery Management Purposes. Indian Journal of Animal Research. 56(8): 933-940. doi: 10.18805/IJAR.B-4905.
Background: Pulicat Lake is one of India’s most valuable ecosystems. Correct species identification is essential for the conservation and management of finite resources. Molecular signatures and character-based keys could be used for faster identification. This will be a powerful tool to obtain a significant amount of accurate information quickly and conveniently and could be used for forensic applications and the conservation of fish in Indian waters.
Methods: In addition to morphological identification, the species were identified using various approaches, such as Neighbour-joining (NJ), Maximum Likelihood (ML) trees and the Character-based method. For each species, the LOGic (BLOG 2.0) DNA Barcode analysis method was used to identify different positions of key diagnostic nucleotides in a given set.
Result: DNA barcodes were generated from twenty-nine species of fish representing seven orders, 26 genera and 21 families in this study. The current study’s findings show that the 16S rRNA barcodes facilitated successful fish species identification and also provided phylogenetic information to differentiate the fishes. The character-based molecular diagnostic keys for fishes were also developed in-silico from the data set comprising 393 mitochondrial 16S rRNA sequences including the sequences generated in the present study and other published resources.

  1. Basheer, V.S., Mohitha, C., Vineesh, N., Divya, P.R., Gopalakrishnan, A., Jena, J.K. (2015). Molecular phylogenetics of three species of the genus Rastrelliger using mitochondrial DNA markers. Mol. Biol. Rep. 42: 873- 879.

  2. Bineesh, K.K., Mohitha, C., Vineesh, N., Basheer, V.S., Joselet, M., Pillai, N.K., Jena, J.K., Gopalakrishnan, A. (2015). Molecular identification of three deep-sea fish species of the genus Chelidoperca (Perciformes: Serranidae) from Indian waters. Indian J. Fish. 62: 104-108.

  3. Bingpeng, X., Heshan, L., Zhilan, Z., Chunguang, W., Yanguo, W., Jianjun, W., 2018. DNA barcoding for identification of fish species in the Taiwan Strait. PLoSOne. 13:e0198109.

  4. Craig, M.T., Hastings, P.A. (2007). A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyological Research 54: 1-17. 

  5. Das, P. and Choudhury, R. (2021). Mitochondrial D-loop Genetic Diversity Studies of Rhinoceros  unicornis in Assam, India. Indian Journal of Animal Research. 55(1): 6-10.

  6. Finizio, D., Guerriero, A., Russo, G., Gian, L., Ciarcia, G. (2006). Identification of gadoid species (Pisces, Gadidae) by sequencing and PCR-RFLP analysis of mitochondrial 12S and 16S rRNA gene fragments. Eur. Food Res. Technol. 225(3): 337-344

  7. Govindan, S.,  Ravichandran, R. (2016). Fish Fauna Diversity and Conservation Status of Pulicat Lagoon in Tamil Nadu. Annals of Aquaculture and Research. 3(2):1018.

  8. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95-98. 

  9. Lakra, W.S., Verma, M.S., Goswami, M., Lal, K.K., Mohindra, V., Punia, P.,  Gopalakrishnan, A., Singh, K.V., Ward, R.D., Hebert, P. (2011). DNA barcoding Indian marine fishes. Mol Ecol Resour. 11 (1):60-71.

  10. Lee, D.J. and Kim, Il-C. (2020). The new freshwater crab belongs to the genus Geothelphusa as inferred from mitochondrial and nuclear DNA markers. Indian Journal of Animal Research. 54(4): 424-429.

  11. Li, Y., Ren, Z., Shedlockm, A.M., Wu, J., Sang, L., Tersing, T. (2013). High altitude adaptation of the Schizothoracine fishes (Cyprinidae) revealed by the mitochondrial genome analysis. Gene 517:169-178.

  12. Lowenstein, J.H., Amato, G., Kolokotronis, S.O. (2009). The real maccoyii: Identifying tuna sushi with DNA barcodes - contrasting characteristics attributes and genetic distances. PLoS ONE 4: e7866.

  13. Mahapatra, S., Rathipriya, A., Priyadarshini, D., Suresh, E., Shanmugam, S.A., Kathivelpandian, A. (2020). Character-based identification system of scombrids from Indian waters for authentication and conservation purposes, Mitochondrial DNA Part B. 5(3): 3239-3242.

  14. Paine, M.A., McDowell, J.R., Graves, J.E. (2007). Specific identification of western Atlantic Ocean scombrids using mitochondrial DNA cytochrome c oxidase subunit I (COI) gene region sequences. Bull Marine Sci. 80:353-367. 

  15. Puncher, G.N., Arrizabalaga, H., Alemany, F., Cariani, A., Oray, I.K., Karakulak, F.S., Basilone, G., Cuttitta, A., Mazzola, S., Tinti, F. (2015). Molecular identification of Atlantic Blue- fin tuna (Thunnus thynnus, Scombridae) larvae and development of a DNA character-based identification key for Mediterranean scombrids. PLOS One. 10(7):e0130407.

  16. Rathipriya, A., Karal Marx, K., Jeyashakila, R. (2019). Molecular identification and phylogenetic relationship of flying fishes of Tamil Nadu coast for fishery management purposes. Mitochondrial DNA Part A. 1-11 .DOI: 10.1080/24701394.2018. 1558220.

  17. Rathipriya, A., Kathirvelpandian, A., Shanmugam, S.A., Suresh, E., Felix, N. (2021). Character-based identification key for commercially important fishes of Pulicat lake: Tool for conservation and management. Mitochondrial DNA Part A. 32:4, 120-125. DOI: 10.1080/24701394.2021.1883009.

  18. Rubinoff, D., Cameron, S., Will, K. (2006). A genomic perspective on the shortcomings of mitochondrial DNA for ‘barcoding’ identification. J. Hered. 97: 581-594.

  19. Saravanan, K., Kumar, S., Praveenraj, J., Meena, B.L., Kasinath, B.L., Kiruba-Sankar, R. and Roy, S.D. (2021). Molecular Characterization of Muscle Infecting Myxobolus sp. Causing Outbreak in Labeo rohita, Rohu: First Report from Andaman Islands, Indian Journal of Animal Research. 55(2): 211- 216.

  20. Schindel, D., Miller, S. (2005). DNA barcoding a useful tool for taxonomists. Nature. 435: 17-17.

  21. Sparks, J.S., Smith, W.L. (2004). Phylogeny and biogeography of the Malagasy and Australasian rainbow fishes (Teleostei: Atherinoidei): Gondwanan vicariance and evolution in freshwater. Mol. Phylogenet. Evol. 33: 719-734 

  22. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution. 30: 2725-2729. 

  23. Teletchea, F. (2009). Molecular identification methods of fish species: Reassessment and possible applications. Rev. Fish Biol. Fish 19: 265-293.

  24. Vargheese, S., Chowdhury, L.M., Shijin Ameri, Anjela Mercy, A., Kathirvelpandian, A. (2019). Character based identification system for Elasmobranchs for conservation and forensic applications. Mitochondrial DNA Part A. 30(4): 651-656.

  25. Vinson, C., Grazielle, G., Schneider, H., Sampaio, I. (2004). Sciaenidae fish of the Caete river estuary, Northern Brazil: Mitochondrial DNA suggests explosive radiation for the Western Atlantic assemblage. Genet Mol Biol. 27: 174-80.

  26. Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., Hebert, P.D. (2005). DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci. 360: 1847-57. 

  27. Wang, L., Wu, Z., Liu, M., Liu, W., Zhao, W., Liu, H., You, F., (2018). DNA barcoding of marine fish species from Rongcheng Bay, China. PeerJ. 6: e5013.

  28. Weitschek, E., van Velzen, R., Felici, G., Bertolazzi, P. (2013). BLOG 2.0: A software system for character based species classification with DNA Barcode sequences: what it does, how to use it. Mol Ecol Resour. 13(6): 1043-1046.

  29. Wiley, E.O., Johnson, G.D., Dimmick, W.W. (1998). The phylogenetic relationships of lampridiform fishes (Teleostei: Acanthomorpha), based on a total evidence analysis of morphological and molecular data. Mol Phylo Evol. 10: 417-425.

Editorial Board

View all (0)