Isolation and Characterization of Lytic Bacteriophage against Methicillin Resistant Staphylococcus aureus from Pyoderma in Dog

DOI: 10.18805/IJAR.B-4869    | Article Id: B-4869 | Page : 873-879
Citation :- Isolation and Characterization of Lytic Bacteriophage against Methicillin Resistant Staphylococcus aureus from Pyoderma in Dog.Indian Journal of Animal Research.2022.(56):873-879
Archana, P. Kaushik, Anjay, A. Kumar, S. Kumari, P. Kumar, P. Shekhar drkaushikvet@gmail.com
Address : Bihar Veterinary College, Bihar Animal Sciences University, Patna-800 014, Bihar, India.
Submitted Date : 17-01-2022
Accepted Date : 15-04-2022


Background: Pyoderma in dog poses complexity owing to involvement of multi drug resistant bacterial infection particularly Staphylococcus species. This may result into failure of antibiotic therapy in pyoderma. Therapeutic use of lytic bacteriophage (phage) may be an alternative to deal antimicrobial resistance in veterinary medicine. There is no report available on isolation and characterization of bacteriophage from clinical cases of pyoderma in animals, hence the study was performed with aim to isolate and characterize lytic phage against methicillin resistant S. aureus (MRSA). 
Methods: The phage was isolated from pus sample of dog suffering from severe pyoderma. The phage was isolated using MRSA as a bacterial host and was named as Staphylococcus phage BVC1 (SPBVC1). The morphology of the phage was determined using TME and was characterised by determining the host range and lytic potential of the phage at range of temperature and pH.
Result: The morphology of phage revealed an icosahedral head of diameter 81.31 nm. with sheath and a central tube and a tail of 92.08 nm. It showed strong lytic activity against Methicillin resistant S. aureus and was stable under a range of temperature varying from 4oC to 45oC and pH from 4 to 11. The phage has shown lytic activity against the MRSA however no lytic activity against the MSSA was shown by the phage. The high specificity of the phage for MRSA indicated its potential use as an alternative therapeutic approach against multidrug resistant staphylococcal infections.


Bacteriophage MRSA Pyoderma Staphylococcus aureus


  1. Adams, M.H. (1959). Bacteriophages. Inter Science Publishers, Inc., New York. 1959.
  2. Bannoehr, J. and Guardabassi, L. (2012). Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Veterinary  Dermatology. 23: 253-266, e251-e252. 2. 
  3. Beco, L., Guaguère, E., Lorente, M., Noli, C., Nuttall, T. and Vroom, M. (2013). Suggested guidelines for using systemic antimicrobials in bacterial skin infections: Antimicrobial choice, treatment regimens and compliance. Veterinary Record. 172: 156-160.
  4. Braoios, A., Fluminhan, A., Pizzolitto, A.C. (2009). Multiplex PCR use for Staphylococcus aureus identification and oxacillin and mupirocin resistance evaluation. Revista de Ciências Farmacêuticas Básica e Aplicada. 1: 303-307.
  5. Bruynoghe, R. and Maisin, J. (1921). Essais de therapeutique au moyen du bacteriophage du Staphylocoque. Comptes Rendus Social Biology. 85: 1120-1121.
  6. Bryan, J., Frank, L.A., Rohrbach, B.W., Burgette, L.J., Cain, C.L. and Bemis, D.A. (2012). Treatment outcome of dogs with methicillin resistant and methicillin susceptible S. pseudintermedius pyoderma. Veterinary Dermatology. 23: 361-368.
  7. Chambers, H.F. and Deleo, F.R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology. 7(9): 629-641. 
  8. Clokie, M.R., Millard, A.D., Letarov, A.V. and Heaphy, S. (2011). Phages in nature. Bacteriophage.1(1): 31-45.
  9. Cui, Z., Feng, T., Gu, F., Li, Q., Dong, Ke., Zhang, Y., Zhu, Y., Han, L., Qin, J. and Guo, X. (2017). Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China Journal of virology. 14: 27. doi 10.1186/s12985-017-0701-0.
  10. Davis, L.G., Dibner, M.D. and Battey, J.F. (1986). Growth and Preparation of Bacteriophage. In: Basic Methods in Molecular biology. New York; Elsevier Science Publishing Co. Inc.  158-160.
  11. Deghorain, M. and Van, M.L. (2012). The Staphylococci phages family: an overview. Viruses. 4: 3316-3335. 
  12. Díaz-Muñoz, S.L. and Koskella, B. (2014). Bacteria-Phage Interactions in Natural Environments. Advances in Applied Microbiology. 89: 135-183. doi:10.1016/b978-0-12-800259-9.00004-4. 
  13. Dulon, M., Haamann, F., Peters, C., Schablon, A. and Nienhaus, A. (2011). MRSA prevalence in European healthcare settings: A review. BMC Infectious Diseases. 11: 138.
  14. Gagetti, P., Wattam, A.R., Giacoboni, G., Paulis, A.D., Bertona, E., Corso, A. and Rosato, A.E. (2019). Identification and molecular epidemiology of methicillin resistant Staphylococcus pseudintermedius strains isolated from canine clinical samples in Argentina. BMC Veterinary Research. 27: 264.
  15. Ganaie, M.Y., Qureshi, S., Kashoo, Z., Wani, S.A., Hussain, M.I., Kumar, R., Maqbool, R., Sikander, P., Banday, M.S., Malla, W.A., Mondal, P. and Khan, R.I.N. (2018). Isolation and characterization of two lytic bacteriophages against Staphylococcus aureus from India: newer therapeutic agents against Bovine mastitis. Veterinary Research Communication. 42(4): 289-295. 
  16. González Domínguez, M.S.G., Carvajal, H.D.,  Echeverri, D.A.C. and Cárdenas, D.C. (2020). Molecular detection and chara cterizationofthe mecA and nuc genes from  staphylococcus  species (S. aureus, S. pseudintermedius and S. schleiferi) isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles. Frontiers in Veterinary Science. 7: 376.
  17. Han, J.E., Kim, J.H., Hwang, S.Y., Choresca, C.H., Shin, S.P., Jun, J.W., Chai, J.Y., Park, Y.H. and Park, S.C. (2013). Isolation and characterization of a Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis. Research in Veterinary Science. 95(2): 758- 763.
  18. Jamalludeen, N., Johnson, R.P., Friendship, R., Kropinski, A.M., Lingohr, E.J. and Gyles, C.L. (2007). Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Veterinary Microbiology. 124: 47-57.
  19. Jevons, M.P. (1961). Celbenin-resistant staphylococci. British Medical Journal. 1: 12 and l25. 
  20. Jones, R.D., Kania, S.A., Rohrbach, B.W., Frank, L.A. and Bemis, D.A. (2007). Prevalence of oxacillin- and multidrug-resistant Staphylococci in clinical samples from dogs: 1,772 samples (2001-2005). Journal of American Veterinary Medical Association. 230: 221-227.
  21. Karmakar, A., Dua, P. and Ghosh, C. (2016). Biochemical and molecular analysis of Staphylococcus aureus clinical Isolates from hospitalized patients. Canadian Journal of Infectious Diseases and Medical Microbiology. http:// dx.doi.org/10.1155/2016/9041636.
  22. Kawakami, T., Shibata, S., Murayama, N., Nagata, M., Nishifuji, K., Iwasaki, T. and Fukata, T. (2010). Antimicrobial susceptibility and methicillin resistance in S. pseudintermedius and S. schleiferi subsp. coagulans isolated from dogs with pyoderma in Japan. Journal of Veterinary Medical Science. 72: 1615-1619.
  23. Kengne, M., Fotie, H.B.N., Nwobegahay, J.M., Achiangia, P.N., Tamoufe, U., Goon, D.T., Mboua, J.B., Tchanana, G., Fualefac, A., Echelibe, H., Djonkam, R.K. and Nkeza, A. (2020). Antibiotic sensitivity profile of Staphylococcus aureus isolated from HIV/AIDS patients presenting with pyoderma, at the Yaounde Central Hospital, Cameroon. Pan African Medical Journal. 37: 185.
  24. Knox, R. (1961). Celbenin-resistant staphylococci. Br. Med. J. 1: 126.
  25. Kutter, E.M., Kuhl, S.J. and Abedon, S.T. (2015). Re-establishing a place for phage therapy in western medicine. Future Microbiology. 10: 685-688.
  26. Kwiatek, M., Parasion, S., Mizak, L., Gryko, R., Bartoszcze, M. and Kocik, J. (2012). Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Achieves of Virology. 157(2): 225-234.
  27. Lee, G.M., Huang, S.S., Rifas-Shiman, S. L., Hinrichsen, V.L., Pelton, S.I., Kleinman, K., Hanage, W.P., Lipsitch, M., McAdam, A.J. and Finkelstein, J. A. (2009). Epidemiology and risk factors for Staphylococcus aureus colonization in children in the post-PCV7 era. BMC Infectious Disease. 9: 110.
  28. Li, L. and Zhang, Z. (2014). Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Molecular Biology Reports. 41(9):5829-5838.  doi 10.1007/s11033-014-3457-2.
  29. Lin, D.M., Koskella, B. and Lin, H.C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics. 8(3):162.
  30. Loeffler, A., Cobb, M.A. and Bond, R. (2011). Comparison of a chlorhexidine and a benzoyl peroxide shampoo as sole treatment in canine superficial pyoderma. Veterinary Record. 169: e249.
  31. Lynch, S.A. and Helbig, K.J. (2021). The Complex Diseases of Staphylococcus pseudintermedius in Canines: Where to Next?. Veterinary Science. 8(1):11.
  32. Mavrogianni, V.S., Cripps, P.J. and Fthenakis, G.C. (2007). Bacterial flora and risk of infection of the ovine teat duct and mammary gland throughout lactation. Preventive Veterinary Medicne. 79(2-4): 163-73.
  33. Morris, D.O., Rook, K.A., Shofer, F.S. and Rankin, S.C. (2006). Screening of Staphylococcus aureus, Staphylococcus intermedius and Staphylococcus schleiferi isolates obtained from small companion animals for antimicrobial resistance: a retrospective review of 749 isolates (2003- 04). Veterinary Dermatology. 17: 332-337.
  34. Morris, D.O., Loeffler, A., Davis, M.F., Guardabassi, L. and Weese, J.S. (2017). Recommendations for approaches to methicillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures. Veterinary Dermatology. 28: 304- 369.
  35. Murphy, F.A., Fauquet, C.M., Bishop, D.H.L., Ghabrial, S.A., Jarvis, A., Martelli, G.P., Mayo, M.A. and Summers, M.D. (1995). Virus Taxonomy. In: Sixth Report of the International Committee on Taxonomy of Viruses. Springer Verlag, Vienna and New York.
  36. O’Flynn, G., Ross, R.P., Fitzgerald, G.F. and Coffey, A. (2004). Evaluation of a cocktail of three phages for biocontrol of E. coli O157: H7. Applied Environmental Microbiology. 70: 3417-3424.
  37. Pintado, V., Pazos, R., Jiménez-Mejías, M.E., Rodríguez-Guardado, A., Díaz-Pollán, B., Cabellos, C., García-Lechuz, J.M., Lora-Tamayo, J., Domingo, P. Muñez, E. and Domingo, D. (2019). Staphylococcus aureus meningitis in adults: A comparative cohort study of infections caused by meticillin-resistant and meticillin-susceptible strains. Journal of Hospital Infection. 102(1): 108-15.
  38. Qekwana, D.N., Oguttu, J.W., Sithole, F. and  Odoi, A. (2017). Burden and predictors of Staphylococcus aureus and S. pseudintermedius infections among dogs presented at an academic veterinary hospital in South Africa (2007-2012). Peer Journal. 13: e3198.
  39. Reddym,S.B., Kumaria, N.K. and Sivajothi, S. (2016). Methicillin- resistant Staphylococcus aureus (MRSA) isolated from dogs with recurrent pyoderma. Journal of Dairy Veterinary and Animal Research. 3: (2): 62-65.
  40. Richard, H.H., Springman, R. and James, J.B. (2008). Optimal Foraging by Bacteriophages through Host Avoidance. The American Naturalist. 171: e149-157.
  41. Rubin, J.E. and Chirino-Trejo, M. (2011). Prevalence, sites of colonization and antimicrobial resistance among Staphylococcus pseudintermedius isolated from healthy dogs in Saskatoon, Canada. Journal of Veterinary Diagnostic Investigation. 23: 351-354.
  42. Tomlin, J., Pead, M.J., Lloyd, D.H., Howell, S., Hartmann, F., Jackson, A. and Muir, P. (1999). Methicillin resistant Staphylococcus aureus infections in 11 dogs. Veterinary Record. 144: 60-64.
  43. Watanabe, R., Matsumoto, T., Sano, G., Ishii, Y., Tateda, K., Sumiyama, Y., Uchiyama, J., Sakurai, S., Matsuzaki, S., Imai, S. and Yamaguchi, K. (2007). Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrobisl Agents and Chemotherapy. 51(2): 446-52.
  44. Yazdi, M., Bouzari, M. and Ghaemi, E.A. (2018). Isolation and characterization of a potentially novel Siphoviridae phage (vB_SsapS-104) with lytic activity against Staphylococcus saprophyticus isolated from urinary tract infection. Folia Microbiologica. https://doi.org/10.1007/s12223-018-0653-9.

Global Footprints