- Akasaka, T., Yokoyama, A., Matsuoka, M., Hashimoto, T. and Watari, F. (2011). Maintenance of hemiround colonies and undifferentiated state of mouse induced pluripotent stem cells on carbon nanotube-coated dishes. Carbon. 49(7): 2287-2299.
- Amit, M. and Itskovitz Eldor, J., (2006). Feeder free culture of human embryonic stem cells. Methods in Enzymology. 420: 37- 49.
- Baird, A.E.G., Barsby, T. and Guest, D.J. (2015). Derivation of canine induced pluripotent stem cells. Reproduction in Domestic Animals. 50(4): 669-676.
- Brunner, E.W., Jurewicz, I., Heister, E., Fahimi, A., Bo, C., Sear, R.P., Donovan, P.J. and Dalton, A.B. (2014). Growth and proliferation of human embryonic stem cells on fully synthetic scaffolds based on carbon nanotubes. ACS Applied Materials and Interfaces. 6(4): 2598-2603.
- Das, K., Madhusoodan, A.P., Mili, B., Kumar, A., Saxena, A.C., Kumar, K., Sarkar, M., Singh, P., Srivastava, S. and Bag, S. (2017). Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells. International Journal of Nano Medicine. 12: 3235.
- Holmes, B., Fang, X., Zarate, A., Keidar, M. and Zhang, L.G. (2016). Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon. 97: 1-13.
- Li, X., Liu, H., Niu, X., Yu, B., Fan, Y., Feng, Q., Cui, F.Z. and Watari, F. (2012). The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials. 33(19): 4818-4827.
- Mahapatra, P.S., Singh, R., Kumar, K., Sahoo, N.R., Agarwal, P., Mili, B., Das, K., Sarkar, M., Bhanja, S.K., Das, B.C., Dhara, S.K. and Bag, S. (2016). Valproic acid assisted reprogramming of fibroblasts for generation of pluripotent stem cells in buffalo (Bubalus bubalis). International Journal of Developmental Biology. 61(1-2): 81-88.
- Marina, M. and Saavedra, H.I. (2014). Nek2 and Plk4: Prognostic markers, drivers of breast tumorigenesis and drug resistance. Frontiers in Bioscience. 19: 352.
- Mondal, T., Das, K., Singh, P., Natarajan, M., Manna, B., Ghosh, A., Singh, P., Saha, S.K., Dhama, K., Dutt, T. and Bag, S. (2021). Thin films of functionalized carbon nanotubes support long-term maintenance and cardio-neuronal differentiation of canine induced pluripotent stem cells. Nanomedicine: Nanotechnology, Biology and Medicine. 40(2022): 102487.
- Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., Takahashi, J., Nishizawa, M. and Yoshida, Y. (2014). A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports. 4(1): 1-7.
- Pan, C., Hicks, A., Guan, X., Chen, H. and Bishop, C.E. (2010). SNL fibroblast feeder layers support derivation and maintenance of human induced pluripotent stem cells. Journal of Genetics and Genomics. 37(4): 241-248.
- Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., Shimizu, M., Narita, N., Okamoto, M., Kobayashi, S. and Nomura, H. (2014). Safe clinical use of carbon nanotubes as innovative biomaterials. Chemical Reviews. 114(11): 6040-6079.
- Takahashi, K., Okita, K., Nakagawa, M. and Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols. 2(12): 3081-3089.
- Villa Diaz, L.G., Ross, A.M., Lahann, J. and Krebsbach, P.H. (2013). Concise review: The evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings. Stem Cells. 31(1): 1-7.
- Wu, Y., Zhang, Y., Mishra, A., Tardif, S.D. and Hornsby, P.J. (2010). Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. Stem Cell Research. 4(3): 180-188.
Submitted Date : 29-12-2021
Accepted Date : 15-01-2022
First Online: