Sample collection
Milk samples were collected with owner’s consent as per standard milk collection procedure. Samples were collected aseptically from bovine mastitic cases presented to veterinary hospitals and from farms in and around Krishna, Guntur and west Godavari districts, Andhra Pradesh. The study was conducted in the Department of Veterinary Microbiology, NTR College of Veterinary Sciences, Gannavaram, Andhra Pradesh.
Bacterial isolation and identification
Approximately 10 ml of milk was collected aseptically from clinical cases into sterile vials. Collected samples from each quarter were transported on ice and immediately cultured or stored at 4°C until cultured/enriched. Milk samples were centrifuged at 2000 g for 10 minutes at 37°C, supernatant was discarded and 5 ml of brain heart infusion (BHI) broth was added to the sediment and incubated at 37°C for 24 hr
(Cruickshank et al., 1975). Selective isolation was done by inoculating 0.9 ml of
Streptococcus selective (SS) broth with 0.1 ml of culture from the BHI broth and incubated at 37°C in an anaerobic jar for 24 hr. The morphology of the organisms was studied by Gram’s staining. SS broth with Gram positive cocci in chain were further inoculated on to Edward’s medium. The
S.
uberis isolates were identified phenotypically and genotypically. The cultures showing greyish, pinpointed colonies and/or aesculin hydrolysis on Edward’s medium were tentatively identified as
Streptococcus species. The suspected isolates of
Streptococcus species were further identified by various biochemical tests
viz., catalase test, ninhydrin test, sodium hippurate hydrolysis test and type of haemolysis on 7% sheep blood agar.
DNA extraction
DNA was extracted by High salt method
(Anand Kumar, 2009) and re-suspended in 40 μl sterile distilled water and stored at -20°C till use. The procedure followed was,
1. Two ml of enriched bacterial culture in tryptic soya broth (TSB) was first washed (at 5,000 rpm for 10 minutes) with Phosphate Buffered Saline in fresh Eppendorf tube (2.0 ml) and then washed with TKM-1 solution (Appendix) at 5,000 rpm for 10 minutes.
2. The bacterial cell pellet was suspended in 100 μl of TKM-2 solution (Appendix) and incubated for 15 min at 37°C.
3. Then, 50 μl of 10% Sodium Dodecyl Sulphate was added and mixed well. Subsequently, 250 μl of 6M Sodium Chloride was added, mixed well and centrifuged at 10,000 rpm for 5 min.
4. The supernatant containing nucleic acid was transferred to fresh microcentrifuge tube (1.5 ml) then 2 volumes of 100% ethanol were added, mixed thoroughly and centrifuged at 10,000 rpm for 5 min at 4°C.
5. The DNA pellet thus obtained was washed twice with 75% ethanol (at 5,000 rpm for 10 minutes) and finally re-suspended in 40 μl sterile distilled water and stored at -20°C till use.
Measurement of DNA concentration and purity
The concentrations of DNA were measured with Nanodrop 20°C (Thermo Scientific, USA) and adjusted to 50 ng/μl for further molecular studies. Pure DNA samples (with an optical density ratio of 1.8 to 2 at 260/280 nm) were stored at -20°C, until further use.
Identification of isolates by PCR
The nucleotide sequence of primers used for detection of
S.
uberis (Sub 302/Sub 396) were, F- CGA AGT GGG ACA TAA AGT TA, R- CTG CTA GGG CTA AAG TCA AT
(Riffon et al., 2001) coding for 23S rRNA, with specific annealing temperatures of 53°C. The isolates with
luxS gene responsible for biofilm formation in were identified by the specific primer with sequence F- TTT GAT GTT CGC TTG GTT CA, R- AGT TTT GCC CAT TCT TTT GC
(Moore, 2009). The time temperature combinations used for PCR are given in Table 1. The PCR amplicons were analysed by electrophoresis on 1.7% agarose gel stained with 0.5 μg of ethidium bromide/1ml in Tris-Borate EDTA (TBE) buffer and then visualised by UV gel documentation system (Bio-Rad).
Biofilm detection in S. uberis isolates
Biofilm forming isolates were identified by MTP assay
(Christensen et al., 1985; Merrit et al., 2005) with minor modifications by
Moore (2009). Quantification of biofilm/nonbiofilm producing colonies was done according to
Milanov et al., (2015). Cut-off OD is defined as three standard deviations above the mean OD of the negative control. Isolates were classified as follows:
Non-biofilm producers (OD ≤ ODc)
Weak biofilm producers (ODc < OD ≤ 2 x ODc)
Moderate biofilm producers (2 x ODc < OD £ 4 x ODc)
Strong biofilm producers (OD > 4 x ODc).
Biofilm inhibition in biofilm forming S. uberis isolates by microtiter plate assay
Biofilm forming isolates were identified by MTP assay. The antagonist effect of resveratrol and UA on biofilm formation and antibacterial resistance was studied by using different concentrations and by its comparison with the control group that did not receive any treatment. The rate of biofilm inhibition was studied by MTP assay. The
S.
uberis isolates were divided into five groups, group 1- control (isolates without receiving any treatment), group 2- Pure colonies with addition of 30 μg/ml UA, group 3- Pure colonies with addition of 100 μg/ml UA, group 4- Pure colonies with addition of resveratrol at concentration of 30 μg/ml, Group 5- Pure colonies with addition of resveratrol at concentration of 100 μg/ml.
Biofilm inhibition studies were conducted on the isolates by the following method, with minor modification from
Moore (2009). Single colonies of each
S.
uberis isolate were inoculated into 5 ml of TSB, placed in a shaker incubator at 37°C and grown overnight to stationary phase. The following day bacterial cultures were diluted at 1:100 with sterile TSB broth with UA and resveratrol of which final concentrations were 100 µg/ml and 30 µg/ml. Hundred µl of the diluted culture were inoculated in a sterile 96-well U- bottom polystyrene plate (Tarsons, Kolkata) and incubated for 48 hours. Planktonic bacteria were removed by washing the plate four times with 100 µl of Phosphate buffered saline and any residual liquid was carefully aspirated. The plate was heat fixed for one hour at 60°C and stained with 100 µl Hucker’s crystal violet solution for two minutes. The excess stain was removed by gentle shaking and washing with water until the water was clear. The plate was blotted dry and 100 µl of a solution containing 10% methanol and 7.5% acetic acid was added, the plate was shaken for one minute and placed in plate reader to record the absorbance at 563 nm. The inhibitory rates were calculated using the following formula: