Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 52 issue 9 (september 2018) : 1281-1284

External anatomical structures of sparrowhawk (Accipiter nisus) encephalon

Hülya Balkaya, Burhan Toprak
1<p style="text-align: justify;">Department of Anatomy Faculty of Veterinary Medicine,&nbsp;Ataturk University, Erzurum, Turkey.</p>
Cite article:- Balkaya H&uuml;lya, Toprak Burhan (2016). External anatomical structures of sparrowhawk (Accipiter nisus) encephalon . Indian Journal of Animal Research. 52(9): 1281-1284. doi: 10.18805/ijar.11157.

The aim of this study was to determine the external anatomical structures of encephalon in the sparrowhawk. For this purpose, four brains of sparrowhawk were assessed for morphometric measurements and external structures. The average weight of the sparrowhawk brain was approximately 3±0,2 g., while the mean length, width and dorsoventral thickness of sparrowhawk brain were measured 24±2 mm, 19±2 mm and 4±1 mm respectively. Dorsal appearance of the sparrowhawk encephalon  showed two cerebral hemispheres, cerebellum, lobus opticus, flocculus and cranial part of medulla spinalis. In lateral aspect of encephalon, pars frontalis cerebri, pars parietalis cerebri, and pars occipitalis cerebri were observed on lateral surface of the hemispherium cerebri from rostral to caudal. The well developed lobus opticus bulged laterally. In ventral view, two small and underdeveloped bulbi olfactorii projected from the rostral pole of the each hemispheres. There was no olfactory tract behind the bulbus olfactorius.  Area behind the chiasma opticum constituted  the brainstem structures. The midbrain, pons, medulla oblongata and medulla spinalis  situated from cranial to caudal respectively in the brainstem. But, there was no distinct borders between the midbrain, pons and medulla oblongata.


  1. Baris, S. (2004). Geleneksel Atmacacýlýk, Cevre ve Orman Bakanligi, Doga Koruma ve Milli Parklar Genel Mudurlugu. Nurol Matbaacilik Ankara, pp. 19-28.

  2. Baumel, J. J., King, S. A., Breasile, J. E., Evans, H. E. and Berge, J. C. V. (1993). Handbook of Avian Anatomy (Nomina Anatomica Avium). Publications of the Nuttal Ornithological Club. Cambridge. Massachusetts, pp. 493-585.

  3. Burish, M. J., Kueh, H. Y. and Wang, S. S. (2004). Brain architecture and social complexity in modern and ancient birds. Brain Behav Evol, 63: 107–124.

  4. Doguer, S. and Erencin, Z. (1964). Evcil Kuslarin Komparatif Anatomisi. Ankara Universitesi Veteriner Fakultesi Yayinlari: 176, A.U. Basimevi, pp. 82-88. 

  5. Dursun, N. (2002). Evcil Kuslarýn Anatomisi. Ankara: Medisan Yayýnevi, p. 158-186. 

  6. Fitzgerald, T. C. (1969). The Coturnix Quail, Anatomy and Histology. The Iowa State University Press, Ames, Iowa, pp. 171-205. 

  7. Healy, S. and Guilford, T. (1990). Olfactory-Bulb Size and Nocturnality in Birds. Evolution, 44: 339-346. 

  8. Iwaniuk, A. N. and Nelson, J. E. (2003). Developmental differences are correlated with relative brain size in birds: A comparative analysis. Can J Zool, 81: 1913–1928.

  9. Kemei P., Yueping F., Gaoying Z., Huazhen L. and Hui S. (2010). Anatomical study of the brain of the African ostrich. Turk J Vet Anim Sci, 34: 235-241. 

  10. Lefebvre, L., Whittle, P., Lascaris, E. and Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Anim. Behav. 53: 549-560. 

  11. Lefebvre, L. (2011). Taxonomic counts of cognition in the wild. Biol Lett, 7: 631–633.

  12. Lefebvre, L., Reader, S. M. and Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain Behav. Evol. 63: 233-246. 

  13. Martin, G. R., Wilson, K. J., Wild, J. M., Parsons, S., Kubke, M. F. and Corfield, J. (2007). Kiwi Forego Vision in the Guidance of Their Nocturnal Activities. PLoS ONE, 2(2): e198. doi:10.1371/journal.pone.0000198 

  14. Nickel, R., Schummer, A. and Seifirle, E. (1977). Anatomy of the Domestic Birds. Verlag Paul Parey, Berlin, Hamburg, pp. 114-142. 

  15. Nicolakakis, N. and Lefebvre, L. (2000). Forebrain size and innovation rate in European birds: feeding, nesting and confounding variables. Behaviour, 137: 1415-1429. 

  16. Reif, J., Böhning-Gaese, K., Flade, M., Schwarz, J. and Schwager, M. (2011). Population trends of birds across the iron curtain: brain matters. Biol Cons, 144: 2524–2533. 

  17. Sol, D., Timmermans, S. and Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Anim Behav, 63: 495–502. 

  18. Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. and Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci U S A, 102: 5460–5465. 

  19. Sol, D., Bacher, S., Reader, S. M. and Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. Amer Nat, 172: 63–71.

  20. Vall-llosera, M. and Sol, D. (2009). A global risk assessment for the success of bird introductions. J App Ecol, 46: 787–795.

Editorial Board

View all (0)