Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.43

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 50 issue 5 (october 2016) : 764-768

Zinc nanoparticles induced brain lesions and behavioral changes in Tilapia nilotica and Tilapia. zillii

Mohamed Afifi*, Osama A. Abu Zinada, Haytham Ali1, Michel Couderchet2
1<p>Department of Biological Sciences, Faculty of Science,&nbsp;King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.</p>
Cite article:- Afifi* Mohamed, Zinada Abu A. Osama, Ali1 Haytham, Couderchet2 Michel (2016). Zinc nanoparticles induced brain lesions and behavioral changesin Tilapia nilotica and Tilapia. zillii . Indian Journal of Animal Research. 50(5): 764-768. doi: 10.18805/ijar.10269.

In this study, the induced behavioral changes and neuropathology of prolonged exposure to high doses of Zinc nanoparticles (Zn-NPs) in two species of tilapia, T. nilotica and T. zilli. was investigated. Fish that were treated with 2000 µg Zn-NPs/L showed severe degenerative changes and vacuolation in the neuropil, particularly of the optic tectum, with congestion of the blood vessels of both the cerebral cortex and the meninx primitive. Loss of the Purkinje cell layer of the cerebellum was noticed as well. Fish showed behavioral changes that included loss of equilibrium, slower movement and swimming sideways. No significant differences (P < 0.05) were observed between T. nilotica and T. zilli in behavioral or pathological changes. The results highlighted the Zn-NPs neurotoxicity and its accompanied neuropathology and related behavioral changes in fish. More caution is needed during the usage of Zn-NPs to avoid possible deleterious impacts on human and animal health.

  1. Adams, C.P., Walker, K.A., Obare, S.O. and Docherty, K.M. (2014). Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One., 9: e85981.

  2. Al-Bairuty,G.A., Shaw, B.J., Handy, R.D. and Henry, T.B. (2013). Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol., 126: 104-115.

  3. Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W. and Hazan, R. (2015). Alternative Antimicrobial Approach: Nano-    Antimicrobial Materials. J Evid Based Complementary Altern Med., 2015: Article ID 246012, 16 pages http://

  4. Deng, X., Luan, Q., Chen, W., Wang, Y., Wu, M., Zhang, H. and Jiao, Z. (2009). Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology., 20: 115101. 

  5. Gamble, M. and Wilson, I. (2002). The Hematoxylins and Eosin. In: [Bancroft JD, Gamble M (ed)], Theory and Practice of Histological Techniques, Churchill Livingstone, New York, pp. 125-138.

  6. Groman, D.B. (1982). Histology of the striped bass. American Fisheries Society. Monograph, n3. American Fisheries Society, Bethesda, Maryland.

  7. Gutiérrez-Praena, D., Puerto, M., Prieto, I., Jos, A., Pichardo, S., Vasconcelos, V. and Cameán, A.M. (2012). Protective role of dietary N-acetylcysteine on the oxidative stress induced by cylindrospermopsin in tilapia (Oreochromis niloticus). Environ Toxicol Chem., 31: 1548–1555

  8. Feng, X., Chen, A., Zhang, Y., Wang, J., Shao, L. and Wei, L. (2015). Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine., 10: 4321–4340.

  9. Hanley, C., Layne, J., Punnoose, A., Reddy, K.M., Coombs, I., Coombs, A. and Wingett, D. (2008). Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology., 19:295103

  10. Hao, L., Chen, L., Hao, J. and Zhong, N. (2013). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk counterparts. Ecotoxicol Environ Safety., 91:52-60.

  11. Hussain, S.M., Javorina, A.K., Schrand, A.M., Duhart, H.M., Ali, S.F. and Schlager, J.J. (2006). The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci., 92: 456-463.

  12. Kermer, P., Liman, J., Weishaupt, J.H. and Bahr, M. (2004). Neuronal apoptosis in neurodegenerative diseases: from basic research to clinical application. Neurodegener Dis., 1: 9-19.

  13. Koziara, J.M., Lockman, P.R., Allen, D.D. and Mumper, R.J. (2006). The blood–brain barrier and brain drug delivery. J. Nanosci. Nanotechnol., 6: 2712-2735.

  14. Lin, D. and Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Poll., 150: 243-250.

  15. Mishra, A. and Devi, Y. (2014). Histopathological alterations in the brain (optic tectum) of the fresh water teleost Channa punctatus in response to acute and subchronic exposure to the pesticide Chlorpyrifos. Acta Histochem., 116: 176-81.

  16. Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environ Int., 32: 967-76.

  17. Nel, A., Xia, T., Madler, L. and Li, N. (2006). Toxic potential of materials at the nanolevel. Science., 311: 622-627

  18. Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C. and Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett., 90: 213902.

  19. Saddick, S., Afifi, M. and Abu Zinada, O.A. (2015). Effect of Zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi Journal of Biological Sciences. (2015), 

  20. Sharma, H.S. and Sharma, A. (2007). Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res., 162: 245-73.

  21. Shi, H., Magaye, R., Castranova, V. and Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol., 10: 15.

  22. Valdiglesias, V., Costa, C., Kiliç, G., Costa, S., Pásaro, E., Laffon, B. and Teixeira, J.P. (2013). Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int., 55:92-100. 

  23. Win-Shwe, T.T., Yamamoto, S., Ahmed, S., Kakeyama, M., Kobayashi, T. and Fujimaki, H. (2006). Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol Lett., 163: 153-60.

  24. Win-Shwe, T.T. and Fujimaki, H. (2011). Nanoparticles and Neurotoxicity. Int. J. Mol. Sci., 12: 6267-6280. 

  25. Zhang, Q.L., Li, M.Q., Ji, J.W., Gao, F.P., Bai, R., Chen, C.Y., Wang, Z.W., Zhang, C. and Niu, Q. (2011). In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms. Int J Immunopathol Pharmacol., 24: 23S-29S.


Editorial Board

View all (0)