Loading...

Transferable blaCTX-M Carrying Multidrug Resistant Escherichia coli from Pig Population of North Eastern Region of India

DOI: 10.18805/IJAR.B-4162    | Article Id: B-4162 | Page : 1049-1056
Citation :- Transferable blaCTX-M Carrying Multidrug Resistant Escherichia coli from Pig Population of North Eastern Region of India.Indian Journal of Animal Research.2021.(55):1049-1056
Rajkumari Mandakini, T.K. Dutta, P. Roychoudhury, P.K. Subudhi, I. Samanta, S. Bandopaddhay, G. Das, A.K. Samanta tapandutta@rediffmail.com
Address : Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl-796 014, Mizoram, India.
Submitted Date : 4-05-2020
Accepted Date : 11-08-2020

Abstract

Background: We investigated the occurrence of blaCTX-M carrying extended spectrum beta lactamase (ESBL) producing Escherichia coli in pigs from 8 North-eastern states of India with special emphasis on the transferability of ESBL gene from resistant E. coli strains to the susceptible Salmonella strains by in vitro and in vivo.
Methods: Fecal samples (n=790) were collected from pigs reared under organized and unorganized farming set up of entire North-eastern region of India. All the samples were processed for isolation and identification of E. coli. All the isolates were subjected to antimicrobial sensitivity assay by disc diffusion method followed by determination of ESBLs producing ability by double disc synergy test (DDST). All the ESBLs producing isolates were screened for blaCTX-M gene by PCR using specific primers. The representative blaCTX-M gene positive isolates were used as donor to determine the ability to transfer of resistance gene in Salmonella by in vitro and in vivo assays with and without antibiotic selection pressure.  
Result: A total of 2,291 E. coli was isolated, of which 1113 and 1178 were from organized and unorganized farms, respectively. Majority of the isolates were multi-drug resistant with highest resistance against amoxicillin (84.81%) followed by cefalexin (77.17%), sulphafurazole (56.79%), piperacillin (46.40%), tetracycline (38.29%) and cefexime (35.66%). Isolates from unorganized farms showed higher resistance than the isolates recovered from organized farms. A total of 654 (28.55%) isolates were confirmed as ESBL producers by double disc synergy test (DDST) method, of which 65 (2.84%) isolates were positive for blaCTX-M gene. Genotypically, isolates with specific amino acids substitution revealed variation in their antibiotic susceptibility by phenotypic method. blaCTX-M gene could be successfully transferred horizontally from E. coli (donor) to Salmonella (recipient) by in vitro (3.6±2.07x10-8 to 4.4±2.88x10-8 transconjugate per donor) and in vivo method. By in vivo method in pig model, the frequency of transfer was higher under the antibiotic selection pressure (6.6±3.05x10-5 to 7.2±1.92x10-5 trans-conjugants per donor) than without antibiotic pressure (5.6±2.3x10-4 to 6.8±3.35x10-4 trans-conjugants per donor).

Keywords

blaCTX-M E. coli Pigs

References

  1. Adeleke, O.E., Onyenwe, N.E., Mbata, T.L. (2012). Detection of blaCTX-M gene on resistant Salmonella enterica from a hospital in Southeast Nigeria. Internationall. Journal of Biochemistry and Biotechnology. 1(5): 162-166.
  2. Al-Charrakh, A.H., Yousif, S.Y., Al-Janabi, H.S. (2011). Occurence and detection of extended spectrum β-lactamases in Klebsiella isolates in Hilla,. Iraq, African Journal of Biotechnology. 10(4): 657-665.
  3. Amavisit, P., Lightfoot, D., Browning, G.F., Markham, P.F. (2003). Variation between Pathogenic Serovars within Salmonella Pathogenicity Islands. Journal of Bacteriology. 185(12): 3624-3635.
  4. Baker, S., Thomson, N., Weill, F.X., Holt, K.E. (2018). Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science. 360(6390): 733-738.
  5. Basavaraj, M.C., Jyothi, P., Basavaraj, V.P. (2011). The prevalence of ESBL among Enterobacteriaceae in a Tertiary Care Hospital of North Karnataka, Indian Journal of Clinical Diagnostics. Research. 5(3): 470-475.
  6. Bhattacharjee, A., Sen, M.R., Prakash, P., Gaur, A., Anupurba, S. (2008). Increased prevalence of extended-spectrum β- lactamase producers in neonatal septicaemic cases at a tertiary referral hospital. Indian Journal of Medical. Microbiology. 26(4): 356-360.
  7. Binch, C.T.T., Heuer, H., Kaupenjohann, M., Smalla, K. (2008). Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiology and Ecology. 66: 25-37.
  8. Clinical and Laboratory Standards Institute CLSI. (2014). Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100. Wayne, PA, U.S.A.
  9. Collignon, P., McEwen, S. (2019). One health-its importance in helping to better control antimicrobial resistance. Tropical. Medicine and Infectious. Diseases. 4: 22.
  10. Denholm, J.T., Huysmans, M., Spelman, D. (2009). Community acquisition of ESBL-producing Escherichia coli: a growing concern. Medical Journal of Australia. 190(1): 45-46.
  11. Dhillon, R.H. and Clark, J. (2012). ESBLs: A Clear and Present Danger? Critical. Care Research and Practice. 625170.
  12. Dutta, T.K., Warjri, I., Roychoudhury, P., Lalzampuia, H., Samanta, I., Joardar, S.N., Bandyopadhyay, S., Chandra, R. (2013). Extended- Spectrum β- Lactamase producing Escherichia coli isolate possessing the Shiga Toxin Gene (stx1) belonging to the O64 serogroup associated with human disease in India. Journal of Clinical Microbiology. 51(6): 2008-2009.
  13. Faure, S., Guyomard, A.P., Delmas, J.M., Laurentie, M. (2009). Impact of therapeutic treatment with β-lactum on transfer of the blaCTX-M-9 resistance gene from Salmonella enterica serovar Virchow to Escherichia coli in gnotobiotic rats. Applied and Environmental. Microbiology. 75: 5523-5528.
  14. Gebreyes, W.A., Thakur, S., Davies, P.R., Funk, J.A., Altier, C. (2004). Trends in antimicrobial resistance phage types and integrons in Salmonella serotypes from pigs. Journal of Antimicrobial Chemotherapy. 53: 997-1003.
  15. Gniadkowski, M. (2001). Evolution and epidemiology of extended- spectrum β- lactamases (ESBLs) and ESBL-producing microorganisms. Clinical. Microbiology and Infection. 7: 597-608.
  16. Hansen, K.H., Damborg, P., Andreasen, M., Nielsen, S.S., Guardabassi, L. (2013). Carriage and fecal counts of cefotaxime M-producing Escherichia coli in pigs: a longitudinal study. Applied. Environmental. Microbiology. 79(3): 794-798.
  17. Holmes, A.H., Moore, L.S.P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P.J., Piddock, L.J. (2016). Understanding the mMechanisms and Ddrivers of Aantimicrobial Rresistance. Lancet. 387: 176-187.
  18. Jabeen, K., Zafar, A., Hasan, R. (2005). Frequency and sensitivity pattern of extended spectrum beta-lactamase producing isolates in a tertiary care hospital laboratory of Pakistan. Journal of Pakistan Medical. Association. 55: 436-439.
  19. Jacoby, G.A., Muniz-Price, L.S. (2005). The new β-lactamase. New England Journal of Medicine. 352: 380-391.
  20. Jain, A., Roy, I., Gupta, M.K., Kumar, M., Agarwal, S.K. (2003). Prevalence of extended spectrum beta-lactamase producing Gram negative bacteria in septicaemic neonates in a tertiary care hospital. Journal of Medical. Microbiology. 52: 421-425.
  21. Jørgensen, C.J., Cavaco, L.M., Hasman, H., Emborg, H.D., Guardabassi, L. (2007). Occurrence of CTX-M-1-producing Escherichia coli in pigs treated with ceftiofur. Journal of Antimicrobial. Chemotherapy. 59: 1040-1042.
  22. Kallen, R., Skurnik, D., Pier, G.B., Andremont, A., Szmigielska, A., Krzemien, G., Roszkowska-Blaim, M., Craig, J.C., Williams, G.J., Simpson, J.M. (2010). Antibiotic prophylaxis and recurrent urinary tract infection in children. New England Journal of. Medicine. 362: 555-556.
  23. Kong, K.F., Schneper, L., Mathee, K. (2010). Beta-lactam Antibiotics: From Antibiosis to Resistance and Bacteriology. APMIS. 118(1): 1-36.
  24. Lalzampuia, H., Dutta, T.K., Warjri, I., Chandra, R. (2013). PCR based detection of extended spectrum beta-lactamases (blaCTX-M and blaTEM) in Escherichia coli, Salmonella spp. and Klebsiella pneumoniae isolated from pigs in North Eastern India (Mizoram). Indian Journal of Microbiology. 53(3): 291-296.
  25. Lewis, J.S., Herrera, M., Wickes, B., Patterson, J.E., Jorgensen, J.H. (2007). First report of the emergence of CTX-M-type extended-spectrum β-lactamase (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrobial. Agents and Chemotherapy. 51: 4015-4021.
  26. Lim, S.K., Lee, H.S., Nam, H.M., Cho, Y.S., Kim, J.M., Song, S.W., Park, Y.H., Jung, S.C. (2007). Antimicrobial resistance observed in Escherichia coli strains isolated from fecal samples of cattle and pigs in Korea during 2003-2004. International. Journal of Food Microbiology. 116: 283-286.
  27. Manoharan, A., Premalatha, K., Chatterjee, S., Mathai, D. (2011). Correlation of TEM, SHV and CTX-M extended-spectrum β-lactamases among Enterobacteriaceae with their in vitro antimicrobial susceptibility. Indian Journal of Medical. Microbiology. 29(2): 161-164.
  28. Mathai, D., Manoharan, A., Vasanthan, G. (2009). Epidemiology and implications of ESBL. Critcal. Care Update. 14: 152-162.
  29. Meyer, E. (2010). Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Critical. Care Update. 14: R113.
  30. Moghnieh, R., Araj, G.F., Awad, L., Daoud, Z., Mokhbat, J.E., Jisr, T., Abdallah, D., Azar, N., Irani-Hakimeh, N., Balkis, M.M., Youssef, M., Karayakoupoglou, G., Hamze, M., Matar, M, Atoui, R., Abboud, E., Feghali, R., Yared, N., Husni, R. (2019). A compilation of antimicrobial susceptibility data from a network of 13 Lebanese hospitals reflecting the national situation during 2015-2016. Antimicrobial. Resistanc and Infection. Control. 8: 41-49.
  31. Nijsten, R., London, N., van den Bogaard, A., Stobberingh, E. (1996). Antibiotic resistance among Escherichia coli isolated from faecal samples of pig farmers and pigs. Journal of Antimicroial. Chemotherapy. 37 (6):1131-1140.
  32. Perez, F.J., Endimiani, A., Hujer, K.M., Bonomo, R.A. (2007). The continuing challenge of ESBLs. Current Opinion in Pharmacology. 7(5): 459-46.
  33. Pérez, J.F. and Hanson, N.D. (2002). Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical. Microbiology. 40(6): 2153-2162.
  34. Pitout, J.D.D., Laupland, K.B. (2008). Extended-spectrum beta-lactamase producing Enterobacteriaceae: An emerging public health concern. Lancet Infectious. Diseases. 8: 159-166.
  35. Rosengren, L.B., Waldner, C.L., Reid-Smith, R.J., Checkley, S.L., McFall, M.E., Raji´c, A. (2008). Antimicrobial resistance of fecal Escherichia coli isolated from grow-finish pigs in 20 herds in Alberta and Saskatchewan. Canadian Journal of Veterinary. Research. 72:160-167.
  36. Salinas, L., Cárdenas, P., Johnson, T.J., Vasco, K., Graham, J., Trueba, G. (2019). Diverse commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. mSphere. 4: e00316-19.
  37. Sanders, C.G., Sanders, W.E. (1992). β-lactam resistance in Gram negative bacteria: global trends and clinical impact. Clinical. Infectious. Diseases. 15: 824-839.
  38. Sasirekha, B., Manasa, R., Ramya, P., Sneha, R. (2010). Frequency and antimicrobial sensitivity pattern of extended spectrum β-lactamases producing E. coli and Klebsiella pneumoniae iIsolated in a Tertiary Care Hospital, Al Ameen. Journal of Medical. Sciencs. 3(4): 265-271.
  39. Schjorring, S., Struve, C., Krogfelt, K.A. (2008). Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine. Journal of Antimicrobial. Chemotherapy. 62: 1086-1093.
  40. Schmitt, J., Jacobs, E., Schmidt, H. (2007). Molecular characterization of extended-spectrum β-lactamases in Enterobacteriaceae from patients of two hospitals in Saxony, Germany. Journal of Medical. Microbiology. 56: 241-249.
  41. Senthilkumaran, K. (2012). Isolation and detection of antimicrobial susceptibility pattern and ESBL production of Escherichia coli in children with gastroenteritis. Internationall. Journal of Pharmacology. Bioscience. 3(4): 32-34.
  42. Shams, S, Hashemi, A, Esmkhani, M, Kermani, S, Shams, E, Piccirillo, A. (2018). Imipenem resistance in clinical Escherichia coli from Qom, Iran. BMC Research Notes. 11(1):314-321.
  43. Singh, A.S., Lekshmi, M., Prakasan, S., Nayak, B.B., Kumar, S. (2017). Multiple Antibiotic Resistant, Extended Spectrum beta-Lactamase (ESBL)-Producing Enterobacter in Fresh Seafood. Microorganisms. (3): 3-9.
  44. Singh, N.P., Goyal, R. (2003). Changing trends in bacteriology of burns in the burns unit, Delhi, India. Burns. 29(2): 129-132.
  45. Sun, Y., Zeng, Z., Chen, S., Ma, J., He, L., Liu, Y., Deng, Y., Lei, T., Zhao, J., Liu, J.H. (2010). High prevalence of CTX-M extended spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical. Microbiology. Infection. 16: 1475-1481.
  46. Wattal, C., Sharma, A., Oberoi, J.K., Datta, S., Prasad, K.J., Raveendra, R. (2005). ESBL– An emerging threat to antimicrobial therapy. Microbiology Newsletter. 10(1): 1-8.
  47. Xia, L.N., Zhao, H.Q., Su, Y., Guo, Q.Y., Chen, T.T., Gao, P. (2012). Resistance survey of Escherichia coli isolates to antibiotics from hoggery in Xinjiang. Xinjiang Agricultural. Science. 12: 27-29.

Global Footprints