Advancement in Cancer Immunotherapy in Veterinary Medicine: A Review

DOI: 10.18805/ijar.B-4141    | Article Id: B-4141 | Page : 993-998
Citation :- Advancement in Cancer Immunotherapy in Veterinary Medicine: A Review.Indian Journal of Animal Research.2021.(55):993-998
Akash, Mamta Mishra, M. Hoque, Amarpal anant.akash9@gmail.com
Address : Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243 122, Uttar Pradesh, India. 
Submitted Date : 11-04-2020
Accepted Date : 16-06-2020


Cancer is one of the leading cause of death in human beings throughout the world. Attempts to treat cancer are made but not effectively. Surgical removal, use of radiation therapy, chemotherapy and combination of these therapies have been tried to cure cancer but every therapy had its own side effects. Due to potential side effects, these therapies failed to develop as the permanent cure for cancer. Stem cell transplantation has also been attempted as an alternative but the recovery rate was very low. The most recent therapy, nowadays, to treat cancer is immunotherapy in which utilises the immunity of the patient to get modulated in such a way that cancerous cells get killed. So this review enlightens the eminent immunotherapies used for veterinary patients. T cell checkpoint inhibitors, engineered T cells, cancer vaccines, and anti-B and anti-T cell antibodies are amongst the important immunotherapies used in human as well as veterinary patient. Inhibition of T cell checkpoint molecules, such as PD-1 and CTLA-4, using monoclonal antibodies are the most advanced techniques developed in humans. These significant immunotherapies have achieved notable success against some of the advanced tumors in humans, including melanoma, renal cell carcinoma and non small cell lung cancer. However, a recent clinical trial with a caninized monoclonal antibody against canine PD-L1 showed response in canine melanoma.  


​​Cancer Checkpoint inhibitors Immunotherapy T cell Veterinary patients


  1. Aldrich, J.F., Lowe, D.B., Shearer, M.H., Winn, R.E., Jumper, C.A., Kennedy, R.C. (2010). Vaccines and immunotherapeutics for the treatment of malignant disease. Clinical and Developmental Immunology.doi:10.1155/2010/697158; 697158. 
  2. Allison, J.P., Chambers, C., Hurwitz, A., Sullivan, T., Boitel, B., Fournier, S., Brunner, M., Krummel, M. (1998). A role for CTLA-4-mediated inhibitory signals in peripheral T cell tolerance? Novartis Foundation Symposium. 215: 92-98.
  3. Bergeron, L.M., McCandless, E.E., Dunham, S., Dunkle, B., Zhu, Y., Shelly J, et al. (2014). Comparative functional characterization of canine IgG subclasses. Vet Immunol Immunopathol. 157(1-2): 31-41. doi:10.1016/j.vetimm.2013. 10.018.
  4. Bergman, P.J., McKnight, J., Novosad, A., Charney, S., Farrelly, J., Craft, D., Wulderk, M., Jeffers, Y., Sadelain, M., Hohenhaus, A.E., et al. (2003). Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: A phase I trial. Clinical Cancer Research. 9: 1284-1290. 
  5. Casucci, M., Bondanza, A., Falcone, L., Provasi, E., Magnani, Z., Bonini, C. (2012). Genetic engineering of T cells for the immunotherapy of haematological malignancies. Tissue    Antigens. 79: 4-14.
  6. Cheadle, E.J., Gornall, H., Baldan, V., Hanson, V., Hawkins, R.E., Gilham, D.E. (2014). CAR T cells: Driving the road from the laboratory to the clinic. Immunological Reviews. 257: 91-106.
  7. Chuang, T.F., Lee, S.C., Liao, K.W., Hsiao, Y.W., Lo, C.H., Chiang, B.L., Lin, X.Z., Tao, M.H., Chu, R.M. (2009). Electroporation-mediated IL-12 gene therapy in a transplantable canine cancer model. International Journal of Cancer. 125: 698-707.
  8. Cieri, N., Mastaglio, S., Oliveira, G., Casucci, M., Bondanza, A., Bonini, C. (2014). Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunological Reviews. 257: 165-180.
  9. Coy, J., Caldwell, A., Chow, L., Guth, A., Dow, S. (2017). PD-1 expression by canine T cells and functional effects of PD-1 blockade. Vet Comp Oncol. 15(4): 1487-502. doi: 10.1111/vco.12294.
  10. Cooper, M.A., Fehninger, T.A., Caligiuri, M.A. (2001). The biology of human natural killer-cell subsets. Trends Immunol. 211: 633-40. doi:10.1016/ S1471-4906(01)02060-9.
  11. Cruz, C.R., Micklethwaite, K.P., Savoldo, B., Ramos, C.A., Lam, S., Ku, S., Diouf, O., Liu, E., Barrett, A.J., Ito, S., et al. (2013). Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: A phase 1 study. Blood. 122: 2965-2973.
  12. Dotti, G., Gottschalk, S., Savoldo, B., Brenner, M.K. (2014). Design and development of therapies using chimeric antigen receptore-expressing T cells. Immunol Rev. 257: 107-26. doi:10.1111/imr.12131.
  13. Gavin, P.G., Song, N., Kim, S.R., Lipchik, C., Johnson, N.L., Bandos, H., et al. (2017). Association of polymorphisms in FCGR2A and FCGR3A with degree of trastuzumab benefit in the adjuvant treatment of ERBB2/HER2-positive breast cancer: analysis of the NSABP B-31 trial. JAMA Oncol. 3(3): 335-41. doi:10.1001/jamaoncol.2016.4884.
  14. Goubier, A., Fuhrmann, L., Forest, L., Cachet, N., Evrad-Blanchard, M., Juillard, V., Fischer, L. (2008). Superiority of needle-free transdermal plasmid delivery for the induction of antigen-specific IFN gamma T cell responses in the dog. Vaccine. 26: 2186-2190.
  15. Heinzerling, L.M., Feige, K., Rieder, S., Akens, M.K., Dummer, R., Stranzinger, G., Moelling, K. (2001). Tumor regression induced by intratumoral injection of DNA coding for human interleukin 12 into melanoma metastases in gray horses. Journal of Molecular Medicine. 78: 692-702.
  16. Huang, Y.C., Hung, S.W., Jan, T.R., Liao, K.W., Cheng, C.H., Wang, Y.S., et al. (2008). CD5- low expression lymphocytes in canine peripheral blood show characteristics of natural killer cells. J Leukoc Biol. 84(6): 1501-10. doi:10.1189/ jlb.0408255
  17. Kawano, M., Itonaga, I., Iwasaki, T., Tsumura, H. (2013). Enhancement of antitumor immunity by combining anti-cytotoxic T lymphocyte antigen-4 antibodies and cryotreated tumor lysate-pulsed dendritic cells in murine osteosarcoma. Oncology Reports. 29: 1001-1006. 
  18. Klingemann, H. (2018). Immunotherapy for Dogs: Running Behind Humans. Front. Immunol. 9: 133. doi: 10.3389/fimmu. 2018.00133.
  19. Kurzman, I.D., MacEwen, E.G., Rosenthal, R.C., Fox, L.E., Keller, E.T., Helfand, S.C., Vail, D.M., Dubielzig, R.R., Madewell, B.R., Rodriguez, C.O., Jr., et al. (1995). Adjuvant therapy for osteosarcoma in dogs: Results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clinical Cancer Research. 1: 1595-1601.
  20. Lebbe, C.,Weber, J.S., Maio, M., Neyns, B., Harmankaya, K., Hamid, O., O’Day, S.J., Konto, C., Cykowski, L., McHenry, M.B., et al. (2014). Survival follow-up and ipilimumab retreatment for patients with advanced melanoma who received ipilimumab in prior phase II studies. Annals of Oncology. 25: 2277-2284.
  21. Lehrnbecher, T., Foster, C.B., Zhu, S., Leitman, S.F., Goldin, L.R., Huppi, K., et al. (1999). Variant genotypes of the low-affinity Fcgamma receptors in two control populations and a review of low-affinity Fcgamma receptor polymorphisms in control and disease populations. Blood. 94(12): 4220-32.
  22. Liao, J.C., Gregor, P., Wolchok, J.D., Orlandi, F., Craft, D., Leung, C., Houghton, A.N., Bergman, P.J. (2006). Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immunity. 6: 8.
  23. Maekawa, N., Konnai, S., Ikebuchi, R., Okagawa, T., Adachi, M., Takagi, S., et al. (2014). Expression of PD-L1 on canine tumor cells and enhancement of IFN-gamma production from tumor-infiltrating cells by PD-L1 blockade. PLoS One. 9(6): e98415. doi:10.1371/journal.pone.0098415.
  24. Maleki, L.A., Baradaran, B., Majidi, J., Mohammadian, M., Shahneh, F.Z. (2013). Future prospects of monoclonal antibodies as magic bullets in immunotherapy. Human Antibodies. 22: 9-13.
  25. Mata, M., Vera, J.F., Gerken, C., Rooney, C.M., Miller, T., Pfent, C., Wang, L.L., Wilson-Robles, H.M., Gottschalk, S. (2014). Toward immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells. Journal of Immunotherapy. 37: 407-415.
  26. McCormack, E., Adams, K.J., Hassan, N.J., Kotian, A., Lissin, N.M., Sami, M., Mujic, M., Osdal, T., Gjertsen, B.T., Baker, D., et al. (2013). Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunology, Immunotherapy. 62: 773-785.
  27. Michael, H.T., Ito, D., McCullar, V., Zhang, B., Miller, J.S., Modiano, J.F. (2013). Isolation and characterization of canine natural killer cells. Vet Immunol Immunopathol. 155(3): 211-7. doi:10.1016/j.vetimm.2013.06.013.
  28. Miller, M.J., Foy, K.C., Kaumaya, P.T. (2013). Cancer immunotherapy: Present status, future perspective and a new paradigm of peptide immunotherapeutics. Discovery Medicine. 15: 166-176. 
  29. Musolino, A., Naldi, N., Bortesi, B., Pezzuolo, D., Capelletti, M., Missale, G., et al. (2008). Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 26(11): 1789-96. doi:10.1200/ JCO.2007.14.8957.
  30. O’Connor, C.M. and Wilson-Robles, H. (2014). Developing T cell cancer immunotherapy in the dog with lymphoma. ILAR Journal. 55: 169-181.
  31. Ott, P.A., Hodi, F.S., Robert, C. (2013). CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clinical Cancer Research. 19: 5300-5309.
  32. Ottnod, J.M., Smedley, R.C., Walshaw, R., Hauptman, J.G., Kiupel, M., Obradovich, J.E. (2013). A retrospective analysis of the efficacy of Oncept vaccine for the adjunct treatment of canine oral malignant melanoma. Veterinary and Comparative Oncology. 11: 219-229.
  33. Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12(4): 252-64. doi: 10. 1038/nrc3239.
  34. Pavlin, D., Cemazar, M., Cor, A., Sersa, G., Pogacnik, A., Tozon, N. (2011). Electrogene therapy with interleukin-12 in canine mast cell tumors. Radiology Oncology. 45:31-39.
  35. Perez-Gracia, J.L., Labiano, S., Rodriguez-Ruiz, M.E., Sanmamed, M.F., Melero, I. (2014). Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Current Opinion in Immunology. 27: 89-97.
  36. Poole, R.M. (2014). Pembrolizumab: first global approval. Drugs. 74: 1973-1981.
  37. Quezada, S.A. and Peggs, K.S. (2013). Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. British Journal of Cancer. 108: 1560-1565.
  38. Raval, R.R., Sharabi, A.B.,Walker, A.J., Drake, C.G., Sharma, P. (2014). Tumor immunology and cancer immunotherapy: Summary of the 2013 SITC primer. Journal for Immunotherapy of Cancer. 2: 14.
  39. Reed, S.D., Fulmer, A., Buckholz, J., Zhang, B., Cutrera, J., Shiomitsu, K., Li, S. (2010). Bleomycin/interleukin-12 electrochemogene therapy for treating naturally occurring spontaneous neoplasms in dogs. Cancer Gene Therapy. 17: 457-464.
  40. Regan, D. and Dow, S. (2015). Manipulation of innate immunotherapy for cancer therapy in dogs. Vet Sci. 2:423-39. doi: 10. 3390/vetsci2040423.
  41. Regan, D., Guth, A., Coy, J., Dow, S. (2015). Cancer immunotherapy in veterinary medicine: current options and new developments. Vet J. 207: 20-8. doi:10.1016/j.tvjl.2015.10.008.
  42. Riches, J.C. and Gribben, J.G. (2013). Advances in chimeric antigen receptor immunotherapy for chronic lymphocytic leukemia. Discovery Medicine. 16: 295-302.
  43. Riley, J.L. (2013). Combination checkpoint blockade-taking melanoma immunotherapy to the next level. The New England Journal of Medicine. 369: 187-189.
  44. Robert, C., Soria, J.C., Eggermont, A.M. (2013). Drug of the year: Programmed death-1 receptor/programmed death-1 ligand-1 receptor monoclonal antibodies. European Journal of Cancer. 49: 2968-2971.
  45. Rodriguez, C. and Hansen, G. (2014). Bioavailability and safety of caninized anti-CD52 monoclonal antibody in dogs with T-cell lymphoma. Proceedings: 34th Annual Veterinary Cancer Society Conference. St Louis, MO.
  46. Rue, S.M., Eckelman, B.P., Efe, J.A., Bloink, K., Deveraux, Q.L., Lowery, D., et al. (2015). Identification of a candidate therapeutic antibody for treatment of canine B-cell lymphoma. Vet Immunol Immunopathol. 164(3-4): 148-59. doi:10. 1016/j.vetimm.2015.02.004.
  47. Ruffell, B., Affara, N.I., Coussens, L.M. (2012). Differential macrophage programming in the tumor microenvironment. Trends in Immunology. 33: 119-126.
  48. Scharf, V.F., Farese, J.P., Coome,r A.R., Milner, R.J., Taylor, D.P., Salute, M.E., et al. (2013). Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice. Am J Vet Res. 74(5): 771-8. doi:10.2460/ ajvr.74.5.771
  49. Shin, J.H., Park, H.B., Oh, Y.M., Lim, D.P., Lee, J.E., Seo, H.H., Lee, S.J., Eom, H.S., Kim, I.H., Lee, S.H., et al. (2012). Positive conversion of negative signaling of CTLA4 potentiates antitumor efficacy of adoptive T-cell therapy inmurine tumor models. Blood. 119: 5678-5687.
  50. Siddiqui, F., Li, C.Y., Larue, S.M., Poulson, J.M., Avery, P.R., Pruitt, A.F., Zhang, X., Ullrich, R.L., Thrall, D.E., Dewhirst, M.W., et al. (2007). A phase I trial of hyperthermiainduced interleukin-12 gene therapy in spontaneously arising feline soft tissue sarcomas. Molecular Cancer Therapeutics. 6: 380-389.
  51. Sliwkowski, M.X. and Mellman, I. (2013). Antibody therapeutics in cancer. Science. 341: 1192-1198.
  52. Son, C.H., Bae, J.H., Shin, D.Y., Lee, H.R., Choi, Y.J., Jo, W.S., Ho Jung, M., Kang, C.D., Yang, K., Park, Y.S. (2014). CTLA-4 blockade enhances antitumor immunity of intratumoral injection of immature dendritic cells into irradiated tumor in a mouse colon cancer model. Journal of Immunotherapy. 37: 1-7.
  53. Topalian, S.L., Drake, C.G., Pardoll, D.M. (2012). Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology. 24: 207-212.
  54. Wang, Q. and Wu, X. (2017). Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol. 46: 210-9. doi:10.1016/j. intimp.2017.03.015
  55. Wu, Y.L., Liang, J., Zhang, W., Tanaka, Y., Sugiyama, H. (2012). Immunotherapies: The blockade of inhibitory signals. International Journal of Biological Sciences. 8: 1420-1430.
  56. Zhang, L., Tizard, I.R. (1996). Activation of a mouse macrophage cell line by acemannan: The major carbohydrate fraction from Aloe vera gel. Immunopharmacology. 35: 119-128.
  57. Zhou, L., Xu, N., Sun, Y., Liu, X.M. (2014). Targeted biopharmaceuticals for cancer treatment. Cancer Letters. 352: 145-151.
  58. Zigler, M., Shir, A., Levitzki, A. (2013). Targeted cancer immunotherapy. Current Opinion in Pharmacology. 13: 504-510.

Global Footprints