Promising inhibition of krait snake’s venom acetylcholinesterase by Salix nigra and its role as anticancer, antioxidant agent

DOI: 10.18805/ijar.10711    | Article Id: B-399 | Page : 317-323
Citation :- Promising inhibition of krait snake’s venom acetylcholinesterase by Salix nigra and its role as anticancer, antioxidant agent .Indian Journal Of Animal Research.2016.(50):317-323

Wasim Ahmed1, Mushtaq Ahmad*1, Rahmat A Khan1 and Nadia Mustaq

mushtaq213@yahoo.com
Address :

Department of Botany, Faculty of Biological Sciences, University of Science & Technology Bannu 28100, KPK-Pakistan.

Submitted Date : 17-11-2015
Accepted Date : 24-03-2016

Abstract

Snakebites are considered a neglected tropical disease that affects thousands of people worldwide. The available anti-venoms are associated with numerous side effects. As an alternative, researchers have extensively studied the plants in order to obtain some unusual treatment. The current study was conceded to evaluate the effects of salix nigra (Black willow) against krait snake venom acetylcholinesterase and its role as anti-cancer, anti-oxidant agent. Standard protocols of Ellman, Meyer, Gyamfi and Ruch were used for enzyme inhibition, anti-cancer and free radicals scavenging assays respectively. The methanolic extract of Salix nigra proved to possess neutralization properties against krait snake (Bungarus Sindanus) venom acetylcholinesterase. Statistical data of the results showed that Salix nigra extract inhibited the krait venom acetylcholinesterase through concentration dependent manner. Kinetic analysis using Lineweaver Burk plot revealed that Salix nigra caused competitive type of inhibition i.e. km value increased while Vmax remain constant with an increase of extract’s concentration. The calculated IC50 value of Salix nigra was found to be 177µg/ml. In DPPH free radical scavenging assay, extract showed good scavenging potential with IC50 value of 317µg/ml. Similarly, using H2O2 free radicals, the % scavenging of the extract at 100, 250, 500 and 1000µg/ml was 41, 54, 69 and 74% in comparison with ascorbic acid. Moreover, the extract exhibited good cytotoxic activity against brine shrimps in a dose dependent manner. The present work suggests, for the first time, that Salix nigra extract can be used not only as a potent inhibitor of snake venom acetylcholinesterase but also for the eradication of free radicals along with significant anticancer activity.

Keywords

Acetylcholinesterase Anticancer Antioxidant Bungarus sindarus Salix nigra.

References

  1. Ahmed, M., Rocha, J.B., Corrêa, M., Mazzanti, C.M., Zanin, R.F., Morsch, A.L., Morsch, V.M., Schetinger, M.R. (2006). Inhibition of two different cholinesterases by tacrine. Chem Biol Interact. 162: 165-71.
  2. Ahmed, A., Rajendaran, K., Jaiswal, D., Singh, H.P., Mishra, A., Chandra, D., Yadav, I.K., Jain, D.A. (2010). Anti-snake venom activity of different Extracts of pouzolzia indica against russel Viper venom. Int J ChemTech Res. 2: 744.
  3. Ahmad, M., Weber, A.D., Zanon, G., Tavares, L.C., Ilha, V., Dalcol, I.I. (2014). Inhibitory and Enzyme-Kinetic Investigation of Chelerythrine and Lupeol Isolated from Zanthoxylum rhoifolium Against Krait Snake Venom Acetylcholinesterase. J. Braz. Chem. Soc. 25: 98-103.
  4. Alam, M.I., Gomesm, A. (2003). Snakes venom neutralization by Indian medical plants (vitex negundo and Emblica officinalis) root extracts. J Ethnopharmacol. 86: 75-80.
  5. Blaylock, R.S. (1982). The treatment of snake bite in Zimbabwe Cent. Afr. J. Med. 28: 237-64.
  6. Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Ann Biochem. 72: 248–254.
  7. Chippaux, J.P, Snake-bites, Appraisal of global situation. Bull. World Health Org., 1998; 76:515-24.
  8. Dave, K.R., Syal, A.R., Katyare, S.S. (2000). Tissue cholinesterases: A comparative study of their kinetic properties, Z. Naturforsch. 55: 100–108.
  9. Duenas, M., Hernandez, T., Estrella, I. (2006). Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 98: 95-103.
  10. Ellman, G., Courtney, Jr.K.D., Andres, V.R.M., Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 7: 88– 95.
  11. El-Shemy, H.A., Aboul-Enein, a.M., Aboul-Enein, K.M., Fujita, K. (2007). Willow leaves’ extracts contain anti-tumor agents effective against three cell types. Plos One. 2: e178.
  12. Falleh, H., Ksouri, R., Chaieb, K., Karray, B., Trabelsi, M., Boulaaba, M., Abdelly, C. (2008). Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food Chem Toxicol. 47: 2308-    2313.
  13. Frobert, Y., Créminon, C., Cousin, X., Rémy, M.H., Chatel, J.M., Bon, S., Bon, C., Grassi, J. (1997). Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization. Biochim Biophys Acta. 1339: 253-67.
  14. Food, nutrition and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997.
  15. Gyamfi, M.A., Yonamine, M., Aniya, Y. (1999). Free radical scavenging activity of medicinal herbs of Ghana Thonningia sanguinea on experimentally induced liver injuries. General Pharmacol. 32: 661-667.
  16. Hagerman, A.E., Reidl, K.M., Jones, G.A., Solvik, K.N., Ritchard, N.T., Hartzfeld, P.W. (1998). High molecular weight plant polyphenolice (tannins) as biological antioxidants. Agr Food Chem. 46: 1887-1892.
  17. Halliwell, B., Gutteridge, J.M.C. (1999). Free radicals, other reactive species and disease. In Free Radicals in Biology and Medicine, 3rd ed.; Oxford University Press: Oxford, UK. 617-783.
  18. Haslam, E. (1989). In Polyphenols vegetable tannins; Phillipson JD; Ayres DC, Baxter J, eds; Cambridge University Press: Cambridge.
  19. Hasson, S.S., Al-Jabri, A.A., Sallam, T.A., AlBalushi, M.A., Mothana, R.A. (2010). Anti-snake Venom Activity of Hibiscus aethiopicus L. against Echis ocellatus and Naja n. nigricollis. J. Toxicol. 20: 837-864
  20. Heinrich, M., Teoh, H.L. (2004). Galanthamine from snowdrop – the development of modern drug against Alzheimer,s disease from local caucesian knowledge. J Ethnopharmacol. 92: 147-162.
  21. Hertog, M.G.L., Feskensm, E.J.M., Hollman, P.C.H., Katan, J.B., Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet. 342: 1007-1011.
  22. Houngton, P.J., Osibogun, I.M. (1993). Flowering plants used against snake bite. J. Ethnopharmacol. 39: 1-29.
  23. Joseph, J.A., Shukitt-Hale, B., Denisova, N.A., Bielinski, D., Martin, A., McEwen, J.J., Bickford, P.C. (1999). Reversal of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blue berry, spinach, or strawberry dietary supplementation. J Neurosci. 19: 8114-8121.
  24. Kane, C.W. (2006). Herbal Medicine of the American Southwest: A Guide to the Identification, Collection, Preparation and Use of the Medicinal and Edible Plants of the Southwestern United States. Lincoln Town Press, Tucson, USA.
  25. Kaneguskue, M., Benassia, J.M., Pedrossa, R.C., Yunesb, R.A., Filhoc, V.C., Maiac, A.A. (2001). Cytotoxic, hypoglycemic activity and phytochemical analysis of Rubus imperialis. Naturforsch. 57: 272-276.
  26. Kilani, S., Sghaier, M.B., Limem, I., Bouhlel, J., Boubaker, W., Bhouri, S.I., A. Neffatti, S.I., Ammarb, M.B., Dijoux-    Franca, G. (2008). In vitro evaluation of antibacterial, antioxidant, cytotoxic and apoptotic activities of the tubers infusion and extracts of Cyperus rotundus, Bioresource Technonol. 99: 904-908.
  27. Kunjan, S.R., Jadhav, S.K., Tiwari, K.L. (2013). Traditional herbal medicine for the treatment of snake bite and scorpion sting by the tribe of Sondh surguja, Chhattisgarh India. Med. Arom. Plants. 2(1). 
  28. Lakshmi, K.S., Vadivu, R. (2010). The anti-snake venom activity of the leaves of Symplocos cochinchinensis (Lour.) S. Moore ssp. laurina (Symplocaceae). Pharmaceutical Letters. 2: 77-81.
  29. Leisewitza, A.L., Blaylockb, R.S., Kettnera, F., Goodheada, A., Goddarda, A., Schoeman, J.P. (2004). The diagnosis and management of snakebite in dogs – a southern African perspective. S. Afr. vet. Ass.75: 7-13.
  30. Lineweaver, H., Burk, D. (1934). The determination of enzyme dissociation constants J Am Chem Soc. 56: 658–666.
  31. Magalhães, A., Santos, G.B., Verdam, M.C.S., Fraporti, L., Malheiro, A., Lima, E.S., DosSantos, M.C. (2011). Inhibition of the inflammatory and coagulant action of Bothrops atrox venom by the plant species Marsypianthes chamaedrys. J Ethnopharmacol. 134: 82.
  32. Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E., McLaughlin, J.L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta med. 45:31-4.
  33. Momoh, S., Friday, E.T., Raphae, E., Stephen, A., Umar, S. (2012). Anti-venom activity of ethanolic extract of bridelia ferruginea leaves against naja nigricollis venom. E3 J Med Res. 1: 069-073.
  34. Pullaiah, T. (2006). Encyclopaedia of World Medicinal Plants. Regency, New Delhi, India. 
  35. Prody, C.A., Zevin-Sonkin, D., Gnatt, A., Goldberg, O., Soreq, H. (1987). Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proceedings of the National Academy of Sciences. 84: 3555-3559.
  36. Ribereau-Gayon, P. (1972). In The Tannins; Heywood, V. H., ed.; Oliver & Boyd: Edinburgh.
  37. Rocha, J.B.T., Emanuelli, T., Pereira, M.E. (1993). Effects of early under nutrition kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp. 53: 431–437.
  38. Ruch, R., Cheng, S.J., Klaunig, J.E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant of catechin isolated from Chinese green tea. Carcinogenesis. 10: 1003-1008.
  39. Santosh, R., Fattepur Shivaji, P., Gawade. (2004). Preliminary screening of herbal plant extracts for antivenom activity against common sea snake (Enhydrina schistose) Poisoning. Pharmacog Magazine. 16: 56-60.
  40. Sheila, M., Godeliver, K., Kalendero, M. (2013). Ethnophamacological Survey of Snake Bite Treatment in Ukerewe Island,
  41. Tanzania. Sch. Acad. J. Pharm. 2: 381-386.
  42. Verma, N., Tripathi, S.K., Sahu, D., Das, H.R., Das, R.H. (2009). Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages. Mol Cell Biochem. 336: 127–135.
  43. Voet, D., Voet, J.G. (1995). Serine protease: In; Biochemistry, 2 ed. John Wiley and sons, USA. 5: 390.
  44. WHO; Snake envenomation, 2010, Fact sheet No 337, Available from http://www.who.int/mediacentre/ factsheets/fs337/en/
  45. Zaidi, M.A., Huda, A., Crow, Jr.S.A. (2006). Pharmacological screening of Arceuthobium oxycedri (Dwarf Mistletoe) of juniper forest of Pakistan. J Bio Sci. 12: 342-349.
     

Global Footprints