Loading...

Molecular Characterization of Antibiotic Resistance Gene Pattern of Staphylococcus aureus and Escherichia coli in Mastitis Affected Dairy Cows

DOI: 10.18805/ijar.B-3972    | Article Id: B-3972 | Page : 463-468
Citation :- Molecular Characterization of Antibiotic Resistance Gene Pattern of Staphylococcus aureus and Escherichia coli in Mastitis Affected Dairy Cows.Indian Journal of Animal Research.2021.(55):463-468
T. Ramasamy, S. Keerthana, M.R. Srinivasan, D. Chandrasekar, K. Porteen, Anurag Borthakur, A. Elamaran, P. Sriram drrams19@gmail.com
Address : Department of Veterinary Pharmacology and Toxicology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai-600 007, Tamil Nadu, India.
Submitted Date : 24-12-2019
Accepted Date : 14-04-2020

Abstract

Background: Antimicrobial resistance is one of the latest challenges facing the scientific community. Raising the drug resistance is caused mainly by indiscriminate usage of antibiotics in human and animal subjects and the spread of antibiotic resistance between the two has an emerging global threat. Hence, current study aimed to study the antimicrobial resistance pattern and molecular detection of antibiotic resistance genes in Staphylococcus aureus and Escherichia coli isolated from mastitis affected cows. 
Methods: Milk samples from mastitis affected cows were subjected to antibiotic sensitivity test and screened for presence of Staphylococcus aureus and Escherichia coli using differential growth media. Molecular characterization of Staphylococcus aureus and Escherichia coli was done with the help of PCR by amplification of ‘nuc’ and ‘uspA’ gene respectively. MICs of Penicillin and Tetracycline were determined using microdilution method. 
Result: Antibiotic sensitivity pattern for Penicillin G, Ampicillin, Amoxycillin, Cefotaxime, Ceftriaxone, Azithromycin, Ciprofloxacin, Gentamicin, Oxytetracycline, Tetracycline and Vancomycin were 74.19%, 100%, 93.50%, 61.29%, 29%, 35.48%, 9.70%, 9.70%, 70.96% and 70.96%  respectively. More than 87.90% of the S. aureus and 50% of the E. coli isolated were resistant to â-lactam antibiotics while 75% of the E.coli and 65.70% of the S. aureus isolated were resistant to Tetracycline antibiotics. The MICs of Penicillin for S.aureus and E.coli are 26.88 µg/ml and 13.54 µg/ml respectively and the MICs of Tetracycline for S. aureus and E. coli are 243.75 µg/ml and 960.93 µg/ml respectively which is 8-9 folds higher than the standard MICs. From the present study, it can be inferred that bovine mastitis cases are highly resistant to antimicrobial drugs. Results further indicate that Staphylococcus aureus and Escherichia coli are both resistant to Penicillin and Tetracycline with very high MIC.  

Keywords

Antibiogram Beta-lactam PCR Teteracycline

References

  1. Arabzadeh, F., Aeini, F., Keshavarzi, F., Behrvash S. (2018). Resistance to Tetracycline and Vancomycin of Staphylococcus aureus isolates from Sanandaj Patients by Molecular Genotyping. Annals of Clinical and Laboratory Research. 6(4): 1-5.
  2. Bilal, A., Wei, W., Muhammad, I., Mohsin, K., Saima, M., Muhammad, H.R., Muhammad, A.N., et al. (2018). Antibiotic Resistance: A rundown of a global crisis. Infection and Drug Resistance. 11: 1645-1658.
  3. Boerlin, P., Peter, K., Hussy, D., Schaellibaum, M. (2003) Methods for identification of Staphylococcus aureus isolates in cases of bovine mastitis. Journal of Clinical Microbiology. 41(2): 767-71. 
  4. Chandrasekaran, D., Venkatesan, P., Tirumurugaan, K.G., Nambi, A.P., Thirunavukkarasu P S, Kumanan K, Vairamuthu S, Ramesh S. (2014). Pattern of Antibiotic Resistant Mastitis in Dairy Cows. Veterinary World. 7(6): 389–394. 
  5. Clermont, O., Stephane, B., Edouard, B., Phane, B. (2000). Rapid and Simple Determination of the Escherichia coli phylogenetic group. Applied and Environmental Microbiology. 10: 4555-58. 
  6. Cremonesi, P., Castiglioni, B., Malferrari, G., Biunno, I., Vimercati, C., Moroni, P., Morandi, S., Luzzana, M. (2006). Technical note: improved method for rapid DNA extraction of mastitis pathogens directly from milk. Journal of Dairy Science. 89(1): 163-69. 
  7. Emaneini, M., Bigverdi, R., Kalantar, D., Soroush, S., Jabalameli, F., Khoshgnab, B.N., Asadollahi, P., Taherikalani, M. (2013). Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in Staphylococcus aureus strains isolated from a burn center. Annals of Burns and Fire Disaster. 26(2): 76-80.
  8. Fang, H. and Goran, H. (2003). Rapid screening and identification of Methicillin-Resistant Staphylococcus aureus from clinical samples by selective-broth and real-time PCR assay. Journal of Clinical Microbiology. 41(7): 2894-99. 
  9. Foster, T.J. (2017). Antibiotic Resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews. 41(3): 430-449. 
  10. Garibyan, L. and Avashia, N. (2014). Research techniques made simple: Polymerase Chain Reaction (PCR). Journal of Investigative Dermatology. 133(3): e6.
  11. Horvath, R.S. and Ropp, M.E. (1974). Mechanism of action of Eosin Methylene Blue Agar in the differentiation of Escherichia coli and Enterobacter aerogenes. International Journal of Systematic Bacteriology. 24(2): 221-224.
  12. Igbinosa, E.O., Abeni, B., Lucy, U.A., Faith, E.O., Owen, O.I. (2016). Prevalence of Methicillin-Resistant Staphylococcus aureus and other Staphylococcus species in raw meat samples intended for human consumption in Benin City, Nigeria: Implications for Public Health. International Journal of Environmental Research and Public Health. 13(10): 949-60.
  13. Jingar, S.C., Mahendra, S., Roy, A.K. (2017) Economic losses due to clinical mastitis in cross-bred cows. Dairy and Veterinary Sciences. 3(2): 555606. DOI: 10.19080/JDVS.2017.03.555606.
  14. Kampf, G., Lecke, C., Cimbal, A.K., Weist, K., Ruden, H. (1998). Evaluation of mannitol salt agar for detection of oxacillin resistance in Staphylococcus aureus by Disk Diffusion and Agar Screening. Journal of Clinical Microbiology. 36 (8): 2254-2257.
  15. Kappeli, N., Morach, M., Zurfluh, K., Corti, S., Inderbinen, N.M., Stephan, R. (2019). Sequence types and antimicrobial resistance profiles of Streptococcus uberis isolated from bovine mastitis. Frontiers in Veterinary Science.
  16. Karami, M., Nowrouzian, F., Alderberth, I., Wold, A.E. (2006). Tetracycline Resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrobial Agents and Chemotherapy. 50(1): 156-161.
  17. Malik, B. and Bhattacharyya, S. (2019). Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Scientific Reports.
  18. Oliveira, A.P., De, J.L., Watts, S.A., Aarestrup, F.M. (2000). Anti-microbial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Europe and the United States. Journal of Dairy Science. 83(4): 855-62. 
  19. Olowe, O.A., Idris, O.J., Taiwo, S.S. (2013) Prevalence of tet genes mediating tetracycline resistance in Escherichia coli clinical isolates in Osun State, Nigeria. European Journal of Microbiology and Immunology. 3(2): 135-140.
  20. Ombarak, R.A., Hinenoya, A., Elbagory, A.M., Yamasaki, S. (2018). Prevalence and molecular characterization of antimicrobial Resistance in Escherichia coli Isolated from raw milk and raw milk cheese in Egypt. Journal of Food Protection. 81 (2): 226-232.
  21. Peacock, S.J. and Peterson, G.K. (2015). Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annual Review of Biochemistry. 84: 577-601.
  22. Pu, W., Su, Y., Li, J., Li, C., Yang, Z., Deng, H. (2014). High incidence of oxacillin-susceptible mecA-Positive staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS ONE. 9:e88134.
  23. Ragbelti, C., Parlak, M., Bayram, Y., Guducuoglu, H., Ceylan, N. (2016). Evaluation of Antimicrobial Resistance in Staphylococcus aureus isolates in years. Interdisciplinary Perspective on Infectious Diseases. Article ID 9171395.
  24. Saini, V., McClure, J. T., Léger, D., Keefe, G. P., Scholl, D.T., Morck, D.W., Barkema, H. W. (2012). Antimicrobial Resistance Profiles of Common Mastitis Pathogens on Canadian Dairy Farms. Journal of Dairy Science. 95(8): 4319-32. 
  25. Sarker, S.D., Lutfun, N., Yashodharan, K. (2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth and its application in the in vitro antibacterial screening of phytochemicals. Methods. 42 (4): 321-24. 
  26. Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A., Charlier, P. (2008). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiological Reviews. 32: 234-258.
  27. Sharma, C., Rokana, N., Chandra, M., Singh, B.P., Gulhane, R.D., Gill JPS, Puniya AK, Panwar H. (2018). Antimicrobial resistance: Its surveillance, impact and alternative management strategies in dairy animals. Frontiers in Veterinary Science. 4(237): 1- 27.
  28. Singh, K., Chandra, M., Kaur, G., Narang, D., Gupta, D.K. (2018). Prevalence and antibiotic resistance pattern among the mastitis causing microorganisms. Open Journal of Veterinary Medicine. 8: 54-64.
  29. Sinha, M., Thombare, N.N., Mondal, B. (2014). Subclinical mastitis in dairy animals. Incidence, Economics and predisposing factors. Scientific World Journal, Article ID 523984.
  30. Ventola, L.C. (2015). Antibiotic resistance Crisis. Pharmacology and Toxicology. 40 (4): 277-283.
  31. Weilders, C.L.C., Fluit, A.C., Brisse, S., Verhoef, J., Schmitz, F.J. (2002). Mec a gene is widely disseminated in Staphylococcus aureus population. Journal of Clinical Microbiology. 40 (11): 3970-3975.

Global Footprints