Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 55 issue 2 (february 2021) : 222-225

Use of Beta-tricalcium Phosphate Bone Graft with Collagen Membrane as Guided Bone Regeneration in Long Bone Fractures with Bone Loss in Dogs: A Clinical Study

K. Preethi, V. Gireesh Kumar, K.B.P. Raghavender, D. Pramod Kumar, M. Lakshman
1Department of Veterinary Surgery and Radiology, P.V. Narsimharao Telangana Veterinary University, College of Veterinary Science, Rajendranagar, Hyderabad-500 030, Telangana, India.
Cite article:- Preethi K., Kumar Gireesh V., Raghavender K.B.P., Kumar Pramod D., Lakshman M. (2020). Use of Beta-tricalcium Phosphate Bone Graft with Collagen Membrane as Guided Bone Regeneration in Long Bone Fractures with Bone Loss in Dogs: A Clinical Study. Indian Journal of Animal Research. 55(2): 222-225. doi: 10.18805/IJAR.B-3930.
Background: Fractures associated with bone loss requires stabilization with suitable fixation devices, placement of appropriate bone grafts to fill up the bone defects and barrier membranes as space maintainers for enhanced bone regeneration. The aim of this study was to evaluate the use of beta-tricalcium phosphate (β-TCP) bone graft with collagen membrane as guided bone regeneration in long bone fractures with bone loss in dogs. 
Method: Six dogs with long bone fractures accompanied with bone loss in Radius-ulna, Femur and Tibia were surgically treated with suitable bone plate as internal fixation with β-TCP bone graft along with collagen membrane placed at the fracture site. 
Conclusion: The application of β-TCP along with collagen membrane for filling the bone defect is extremely simple, convenient and less time consuming and proved to be effective in promoting early bone healing with rapid later phase bone healing and provided osteoconductive support  and early resorption.
  1. Anker, C.J., Holdridge, S.P., Baird, B., Cohen, H. and Damron, T. A. (2005). Ultraporou Beta-Tricalcium Phosphate Is Well Incorporated in Small Cavitary Defects. Clinical Orthopaedics and Related Research. 434: 251-257.
  2. Benque, E., Zahedi, S., Brocard, D., Marin, P., Brunel, G. and Elharar, F. (1999). Tomo densitometric and histologic evaluation of the combined use of a collagen membrane and a hydroxyapatite spacer for guided bone regeneration: a clinical report. International Journal of Oral and Maxillofacial Implants. 14: 258.
  3. Bohner, M. (2010). Resorbable biomaterials as bone graft substitutes. Materials Today. 13: 24-30.
  4. Bucholz, R.W. (1987). Clinical experience with bone graft substitutes. Journal of Orthopaedics Trauma. 1: 260-262.
  5. Campana, V., Milano, G., Pagano, E.M., Barba, M., Cicione, C., Salonna, G., Lattanzi, W. and Logroscino, G. (2014). Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine. 25: 2445-2461.
  6. Carlo Reis, E.C., Borges, P.B., Araujo, A., Mendes, M.V.F., Guan, L. and Davies, J.E. (2011). Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials. 32: 9244.
  7. Damron, T.A. (2007). Use of 3D beta-tricalcium Phosphate(Vitoss) scaffolds in repairing bone defects. Nanomedicine. 2(6): 763-775.
  8. Fleming Jr, J.E., Cornell, C.N. and Muschler, G.F. (2000). Bone cells and matrices in orthopedic tissue engineering. Orthopaedic Clinics of North America. 31: 357-374.
  9. Franch, J., Diaz-Bertrana, C., Lafuente, P., Fontecha, P., Durall, I. (2006). Beta-tricalcium phosphate as a synthetic cancellous bone graft in veterinary orthopaedics: a retrospective study of 13 clinical cases. Veterinary and Comparative Orthopaedics and Traumatology. 19(4): 196-204.
  10. Gibert, Sophie, R., Ragetly, G., Boudrieau and Randy, (2015). Locking compression plate for treatment of 20 distal fractures of the radius and ulna in toy and miniature breed dogs less than 6 kg. Veterinary and comparative orthopaedics and traumatology. 28: 441-447.
  11. Grado, G.F.D., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A.M., Benkirane-Jessel, N., Offner, D. (2018). Bone substitutes: a review of their characteristics, clinical use and perspectives for large bone defects management. Journal of Tissue Engineering. 9 : 1-18.
  12. Guda, T., Walker, J.A., Singleton, B.M., Hernandez, J.W., Son, J.S., Kim, S.G. and Wenke, J.C. (2013). Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane. Tissue Engineering Part A. 19(17-18): 1879-1888.
  13. Hu, C.T., Offley, S.C., Yaseen, Z., O’Keefe, R.J. and Humphrey, C.A. (2011). Murine model of oligotrophic tibial nonunion. Journal of Orthopaedic Trauma. 25(8): 500-505.
  14. Jegoux, F., Goyenvalle, E., Cognet, R., Malard, O., Moreau, F. and Daculsi, G. (2011). Mandibular segmental defect regenerated with macroporous biphasic calcium phosphate, collagen membrane and bone marrow graft in dogs. Archives of Otolaryngology- Head and Neck Surgery. 136: 971.
  15. Johnson, A.L. (2013). Management of specific fractures. In: Textbook of Small Animal Surgery. Fossum, T.W., 4th Ed, Missouri, Elsevier Health Sciences. 1140-1148.
  16. Khan, Y., Yaszemski, M.J., Mikos, A.G. and Laurencin, C.T. (2008). Tissue engineering of bone: material and matrix considerations. Journal of Bone and Joint Surgery. 90: 36-42. 
  17. Lopes, D., Martins-Cruz, C., Oliveira, M.B. and Mano, J.F. (2018). Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 185: 240-75.
  18. Malhotra, A. and Habibovic, P. (2016). Calcium phosphates and angiogenesis: Implications and advances for bone regeneration. Trends Biotechnology. 34(12): 983-992.
  19. Ogose, A., Hotta, T., Kawashima, H., Kondo, N., Gu, W., Kamura, T. and Endo, N. (2004). Comparison of Hydroxyapatite and Beta Tricalcium Phosphate as Bone Substitutes After Excision of Bone Tumors. Journal of Biomedical Material Research Part B: Applied Biomaterials. 72B: 94-101. 
  20. Oh, T.J., Meraw, S.J, Lee, E.J., Giannobile, W.V. and Wang, H.L. (2003). Comparative analysis of collagen membranes for the treatment of implant dehiscence defects. Clinical Oral Implants Research. 14: 80-90.
  21. Pinto, P., Atayde, L., Campos, J., Caseiro, A., Pereira, T., Mendonca, C., Santos, J. and Mauricio, A. (2016). Therapeutic strategies for bone regeneration: the importance of biomaterials testing in adequate animal models. Advanced Composite Materials. 275-319.
  22. Queiroz, T.P., Hochuli-Vieira, E., Gabrielli, M.A. and Cancian, D.C. (2006). Use of bovine bone graft and bone membrane in defects surgically created in the cranial vault of rabbits. Histologic comparative analysis. International Journal of Oral and Maxillofacial Implants. 21: 29.
  23. Rogers, G.F. and Greene, A.K. (2012). Autogenous bone graft: basic science and clinical implications. Journal of Craniofacial Surgery. 23: 323-327.
  24. Sasaki, G., Watanabe, Y., Miyamoto, W., Yasui, Y., Morimoto, S. and Kawano, H. (2017). Induced membrane technique using beta-tricalcium phosphate for reconstruction of femoral and tibial segmental bone loss due to infection: technical tips and preliminary clinical results. International Orthopaedics. 42(1): 17-24.
  25. Sen, C., Balci, H.I., Celiktas, M., Ozkan, C., Gulsen, M. (2018). Definitive surgery for open fractures of the long bones with external Fixatýon. In: Basic techniques for extremity reconstruction, Springer. 28-107. 
  26. Shim, J.H., Huh, J.B., Park, J.Y., Jeon, Y.C., Kang, S.S., Kim, J.Y., Rhie, J.W. and Cho, D.W. (2013). Fabrication of blended polycaprolactone/poly (lactic-coglycolic acid)/beta-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration. Tissue Engineering Part A. 19: 317-328.
  27. Sinibaldi, K.R. (2014). Harvesting, Storage and Application of Cortical Allografts. In: Current Techniques in Small Animal Surgery, Bojrab M J, 5th Ed, Baltimore, Williams and Wilkins, 864.
  28. Tanaka, T., Komaki, H., Chazono, M., Kitasato, S., Kakuta, A., Akiyama, S. and Marumo, K. (2017). Basic research and clinical application of beta-tricalcium phosphate (β-TCP). Morphologie. 101(334): 164-172.
  29. Wessing, B., Lettner, S. and Zechner, W. (2018). Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials. A Systematic Review and Meta-Analysis. The International Journal of Oral and Maxillofacial Implants. 33(1): 87-100.

Editorial Board

View all (0)