Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 11 (november 2020) : 1400-1407

Molecular Characterization of Biofilm-Producing Pseudomonas aeruginosa Isolated from Healthy Pigs and Chicken in India

S. Chakraborty, T.K. Dutta, P. Roychoudhury, I. Samanta, Lalhruaipuii, S. Kalai, S. Bandyopadhyay
1Department of Veterinary Microbiology, Central Agricultural University, Selesih, Aizawl-796 014, Mizoram, India.
Cite article:- Chakraborty S., Dutta T.K., Roychoudhury P., Samanta I., Lalhruaipuii, Kalai S., Bandyopadhyay S. (2020). Molecular Characterization of Biofilm-Producing Pseudomonas aeruginosa Isolated from Healthy Pigs and Chicken in India. Indian Journal of Animal Research. 54(11): 1400-1407. doi: 10.18805/ijar.B-3903.
Pseudomonas aeruginosa is considered as the most potent member of multidrug-resistant (MDR) and extremely resistant (XDR) gram-negative pathogens (‘ESCAPE’ group) emerged throughout the world with the property to ‘escape’ the treatment with antibiotics. Biofilm formation is a significant virulence property of P. aeruginosa generating not only antibiotic resistance, but also it acts as a constant source of infection in the host and it can prevent host defence such as chemotaxis of polynuclear immune cells. There is paucity of scientific literatures regarding characterization of biofilm producing P. aeruginosa isolated from livestock and birds. A total of 200 rectal swabs were collected from pigs (n=100) and chickens (n=100) from Mizoram state of India. All the specimens were processed of isolation and identification of P. aeruginosa, which were further confirmed by 16S rRNA PCR and Phoenix bacterial identification system. All the isolates were subjected to detection of biofilm producing ability by microtiter plate assay, antimicrobial sensitivity by disc diffusion assay and detection of selected biofilm producing genes as well as selected beta lactamase genes by specific PCR assay. A total of 11 P. aeruginosa were isolated from pigs (n=6) and chickens (n=5). All the isolates were recorded as positive for biofilm production by microtiter plate assay and were positive for at least one biofilm associated genes. A total of 8 isolates were positive for blaTEM gene and one isolates was positive for blaCTX-M gene. This is probably the unique report on isolation of P. aeruginosa from animals carrying both beta lactamase as well as biofilm producing genes.
  1. Al Bayssari, C., Dabboussi, F., Hamze, M., Rolain, J.M. (2014). Emergence of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in livestock animals in Lebanon. Journal of Antimicrobial Chemotherapy. 70(3): 950-951. 
  2. Bokaeian, M., Zahedani, S.S., Bajgiran, M.S., Moghaddam, A.A. (2015). Frequency of PER, VEB, SHV, TEM and CTX-M genes in resistant strains of Pseudomonas aeruginosa producing extended spectrum â-lactamases. Jundishapur Journal of Microbiology. 8(1). e13783.
  3. Clinical and Laboratory Standards Institute (2014). Performance standards for antimicrobial susceptibility testing; Twenty-    fourth informational supplement. CLSI doc: M100-S24.
  4. Costerton, J.W. (2001). Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends in Microbiology. 9(2): 50–52.
  5. Costerton, J.W., Stewart, P.S., Greenberg, E.P. (1999). Bacterial biofilms: a common cause of persistent infections. Science. 284 (5418): 318–322.
  6. Das, T., Manefield, M. (2013). Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa. Communicative and Integrative Biology. 6(3): 23570. 
  7. Elsayed, M.S.A., Ammar, A.M., Al-Shehri, Z.S., Abd-El Rahman, H., Abd-El Rahman, N.A. (2016). Virulence repertoire of Pseudomonas aeruginosa from some poultry farms with detection of resistance to various antimicrobials and plant extracts. Cellular and Molecular Biology. 62(1): 124. doi: 10.4172/1165-158X.1000124.
  8. Fazeli, N., Momtaz, H. (2014). Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iranian Red Crescent Medical Journal. 16(10): e15722. doi: 10.5812/ircmj.15722.
  9. Finnan, S., Morrissey, J.P., O’gara, F., Boyd, E.F. (2004). Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. Journal of Clinical Microbiology. 42(12): 5783-5792. 
  10. Ghadaksaz, A., Fooladi, A.A.I., Hosseini, H.M., Amin, M. (2015). The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. Journal of Applied Biomedicine. 13(1): 61-68. 
  11. Gonçalves, I.R., Dantas, R.C.C., Ferreira, M.L., Batistão, D.W.D.F., Gontijo-Filho, P.P., Ribas, R.M. (2017). Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Brazilian Journal of Microbiology. 48(2): 211-217. 
  12. Gordillo, G.M., Bernatchez, S.F., Diegelmann, R., Di Pietro, L.A., Eriksson, E., Hinz, B., et al. (2013). Preclinical models of wound healing: is man the model? Proceedings of the Wound Healing Society Symposium. 
  13. Hay, I.D., Gatland, K., Campisano, A., Jordens, J.Z., Rehm, B.H. (2009). Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Applied and Environmental Microbiology. 75(18): 6022-6025. 
  14. Howard, D.H. (1956). The preservation of bacteria by freezing in glycerol broth. Journal of Bacteriology. 71(5): 625.
  15. Hraiech, S., Brégeon, F., Rolain, J.M. (2015). Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Design, Development and Therapy. 9: 3653.
  16. Lambert, P.A. (2002). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the Royal Society of Medicine. 95(Suppl 41): 22. 
  17. Lomholt, J.A., Poulsen, K., Kilian, M. (2001). Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infection and Immunity. 69(10): 6284-6295.
  18. Ma, L., Conover, M., Lu, H., Parsek, M.R., Bayles, K., Wozniak, D.J. (2009). Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens. 5(3): e1000354. 
  19. Mah, T.F.C., O’Toole, G.A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology. 9(1): 34–39.
  20. Mavrodi, D.V., Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G., Thomashow, L.S. (2001). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. Journal of Bacteriology. 183(21): 6454-6465.
  21. MONSTEIN, H. J., Östholm Balkhed, Å., Nilsson, M. V., Nilsson, M., Dornbusch, K., Nilsson, L. E. (2007). Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX M genes in Enterobacteriaceae. Apmis. 115(12): 1400-1408.
  22. Odumosu, B.T., Ajetunmobi, O., Dada-Adegbola, H., Odutayo, I. (2016). Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human, animal and plant sources. Springer Plus. 5(1): 1381. 
  23. Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology and Infectious Disease. 4(5): 877-886.
  24. Olson, M.E., Ceri, H., Morck, D.W., Buret, A.G., Read, R.R. (2002). Biofilm bacteria: formation and comparative susceptibility to antibiotics. Canadian Journal of Veterinary Research. 66(2): 86.
  25. Perez, L.R.R., Costa, M.C.N., Freitas, A.L.P.D., Barth, A.L. (2011). Evaluation of biofilm production by Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Brazilian Journal of Microbiology. 42(2): 476-479. 
  26. Peymani, A., Naserpour-Farivar, T., Zare, E., Azarhoosh, K.H. (2017). Distribution of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran. Journal of Preventive Medicine and Hygiene. 58(2): E155.
  27. Quinn, P.J., Carter, M.E., Markey, B.K., Carter, G.R. (1994). In: Clinical Veterinary Microbiology. London, UK: Wolf Publishing. p. 21 66.
  28. Rahman, S., Barthakur, S., Kalita, G. Pig production and management  system in Aizawl district of Mizoram, India. Health care. 95: 5. (2008)
  29. Rice, L.B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. Journal of Infectious Disease. 97: 1079–1081.
  30. Roy, S., Elgharably, H., Sinha, M., Ganesh, K., Chaney, S., Mann, E., Miller, C., Khanna, et al. (2014). Mixed species biofilm compromises wound healing by disrupting epidermal barrier function. The Journal of Pathology. 233(4): 331-343. 
  31. Ryder, C., Byrd, M., Wozniak, D.J. (2007). Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Current opinion in Microbiology. 10(6): 644-648.
  32. Sala, C., Morar, A., Colibar, O. and Morvay, A.A. (2012). Antibiotic resistance of gram negative bacteria isolated from meat surface biofilm. Romanian Biotechnological Letter. 17(4): 7483-7492. 
  33. Samanta, I. (2013). Pseudomonas and Burkholderia. In: Veterinary bacteriology, New India Publishing Agency, New Delhi, India: P. 209-223.
  34. Senthamarai, S. (2014). Resistance pattern of Pseudomonas aeruginosa in a tertiary care hospital of Kanchipuram, Tamilnadu, India. Journal of Clinical Diagnosis and Research. 8(5): 30-32.
  35. Shaver, C.M., Hauser, A.R. (2004). Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infection and Immunity. 72(12): 6969-6977.
  36. Shirehjini, F.F., Amini, K., Fatahi, H. (2017). Identification of blaCTX-    M, blaSHV, and blaTEM genes in Pseudomonas aeruginosa strains isolated from human and animal samples using multiplex-PCR method. Qom University of Medical Sciences Journal. 10(11): 51-60.
  37. Stepanoviæ, S., Æirkoviæ, I., Ranin, L., S–’ vabiæ Vlahoviæ, M. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology. 38(5): 428-432. 
  38. Walsh, T.R., Toleman, M.A. (2012). The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. Journal of Antimicrobial Chemotherapy. 67(1): 1-3.
  39. Wang, Y., Wilks, J.C., Danhorn, T., Ramos, I., Croal, L., Newman, D.K. (2011). Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. Journal of Bacteriology. 193(14): 3606-3617. 
  40. Weill, F. X., Demartin, M., Fabre, L., Grimont, P. A. (2004). Extended-spectrum-â-lactamase (TEM-52)-producing strains of Salmonella enterica of various serotypes isolated in France. Journal of Clinical Microbiology. 42(7): 3359-3362.
  41. Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., Greenberg, E.P. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature. 413(6858): 860.
  42. Wolska, K.A.T.A.R.Z.Y.N.A., Szweda, P.I.O.T.R. (2009). Genetic features of clinical Pseudomonas aeruginosa strains. Polish Journal of Microbiology. 58(3): 255-260.
  43. Wozniak, D.J., Wyckoff, T.J., Starkey, M., Keyser, R., Azadi, P., O’Toole, G.A., Parsek, M.R. (2003). Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proceedings of the National Academy of Sciences. 100(13): 7907-7912. 
  44. Xavier, B.B., Lammens, C., Butaye, P., Goossens, H., Malhotra-    Kumar, S. (2016). Complete sequence of an IncFII plasmid harbouring the colistin resistance gene mcr-1 isolated from Belgian pig farms. Journal of Antimicrobial Chemotherapy. 71(8): 2342-2344.

Editorial Board

View all (0)