Effects of Acute Toxicity of Chlorpyrifos (EC 50%) and Associated Histological Alterations in Gills, Liver and Kidney of Mozambique Tilapia, Oreochromis mossambicus (Peters, 1852)

DOI: 10.18805/ijar.B-3876    | Article Id: B-3876 | Page : 1497-1504
Citation :- Effects of Acute Toxicity of Chlorpyrifos (EC 50%) and Associated Histological Alterations in Gills, Liver and Kidney of Mozambique Tilapia, Oreochromis mossambicus (Peters, 1852).Indian Journal Of Animal Research.2020.(54):1497-1504
A. Subburaj, P. Jawahar, N. Jayakumar, A. Srinivasan, B. Ahilan jayakumar@tnfu.ac.in
Address : Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam-611 002, Tamil Nadu, India.
Submitted Date : 8-07-2019
Accepted Date : 4-09-2020

Abstract

Background: The pesticides are known to adversely affect the quality of water and create hazards for aquatic life that results in severe damage to non-target freshwater organisms including fish. Among them, the organophosphorus pesticide, chlorpyrifos (CPF) is one of the most commonly used pesticides for controlling various kinds of pests in agriculture. Pesticides after entering in to the body of fish bring about histopathological and biochemical changes in different target and non-target organs. Hence, the present study aimed to investigate the toxicity effects of Chlorpyrifos (CPF) and associated histopathological changes in the gill, liver and kidney of the Mozambique Tilapia, Oreochromis mossambicus under the acute toxicity concentrations. 
Methods: Static bioassay was carried out for Chlorpyrifos with Oreochromis mossambicus as test animal for a period of 96 hrs as per standard methods and LC50 values were calculated through Probit analysis. The fishes were exposed to five acute concentrations (0.033, 0.066, 0.132, 0.264 and 0.528 ppb). The gill, liver and kidney tissues were collected from the fishes exposed to the pesticide and standard histology protocol was followed to investigate the histopathological changes.
Result: The histological changes observed in the gill included lamellar aneurysm, curling of secondary lamellae, shortening of the secondary lamellae, hypertrophy of epithelial cell, fusion of secondary lamellae, deformation of the cartilage core, blood congestion, collapsed secondary lamellae, excessive mucus secretion, disorganization of the secondary lamellae, haemorrhage at primary lamellae, necrosis, haemorrhage at secondary lamellae. The most common histopathological changes in the liver were characterized by cellular necrosis, degeneration of hepatocytes, nuclear degeneration, fat deposition, rupture of nucleus, hypertrophied hepatocytes, blood congestion, blood sinusoids, cellular hypertrophy, increased pycnotic nucleus, cirrhosis and hemosiderosis. Further, histological changes like appearance of dilated lumen, hypertrophied epithelial cells, severe haemorrhage, blood congestion, melanomacrophage aggregation, narrowing of lumen, degenerated tubule, degenerated glomerulus, shrunken glomerulus and distended glomerulus were observed in the kidney. Thus, it is evident from the present study that Chlorpyrifos can be a potential toxicant affecting the fishes at tissue level on dose and time dependent manner which are expected to affect the other physiological processes in the long run. 

Keywords

Acute toxicity Chlorpyrifos Histology Oreochromis mossambicus

References

  1. APHA (1995). Standard methods for the examination of water and wastewater. 19th Edn. American Public Health Association, New York, pp. 136.
  2. Banaee, M., Haghi, B.N., Ibrahim, A.T.A. (2013). Sub-lethal toxicity of chlorpyrifos on Common carp, Cyprinus carpio (Linnaeus, 1758): Biochemical response. International Journal of Aquatic Biology. 1(6): 281-288.
  3. Barron, M.G., Woodburn, K.B. (1995). Ecotoxicology of chlorpyrifos. In Reviews of environmental contamination and toxicology. 144: 1-93.
  4. Bhatnagar, A., Yadav, A.S., Cheema, N. (2016). Genotoxic effects of chlorpyrifos in freshwater fish Cirrhinus mrigala using micronucleus assay. Advances in Biology, 2016.
  5. Brongs, W.A, Mount, D.I. (1978). Estimating the hazard of chemical substances to aquatic life (Chapter 2). In: Introduction to a discussion of the use of aquatic toxicity tests for evaluation of the effects to toxic substances. ASTM International. STP 657: 15-26.
  6. Chindah, A.C., Sikoki, F.D., Ijeoma, V.A. (2004). Toxicity of an organo phosphate pesticide (chloropyrifos) on a common Niger Delta Wetland fish - Tilapia guineensis (Blecker 1862). J. Appl. Sci. Environ. Mgt. 8(2): 11-17. 
  7. De Silva, P.M.C.S., Samayawardhena, L.A. (2002). Low concentrations of lorsban in water result in far reaching behavioral and histological effects in early life stages in guppy. Ecotoxicology and environmental safety. 53(2): 248-254.
  8. Devi, Y., Mishra, A. (2013). Histopathological alterations in gill and liver anatomy of fresh water, air breathing fish Channa punctatus after pesticide Hilban® (Chlorpyrifos) treatment. Adv. Biores. 4(2): 57-62.
  9. Dutta, H.M., Munshi, J.S.D., Dutta, G.R., Singh, N.K., Adhikari, S., Richmonds, C.R. (1995). Age related differences in the inhibition of brain acetylcholinesterase activity of Heteropneustes fossilis (Bloch) by malathion. Comparative Biochemistry and Physiology Part A: Physiology. 111(2): 331-334.
  10. Ganeshwade, R.M. (2012). Effect of dimethoate on the level of cholesterol in freshwater Puntius ticto (Ham). Kidney. 11 (1.0474): 16-1333.
  11. Grinwis, G.C.M., Boonstra, A., Van Den Brandhof, E.J., Dormans, J.A.M.A., Engelsma, M., Kuiper, R.V., Van Loveren, H., Wester, P.W., Vaal, M.A., Vethaak, A.D., Vos, J.G. (1998). Short-term toxicity of bis (tri-n-butyltin) oxide in flounder (Platichthys flesus): Pathology and immune function. Aquatic Toxicology. 42(1): 15-36.
  12. Hartl, M.G., Hutchinson, S., Hawkins, L.E. (2001). Organotin and osmoregulation: quantifying the effects of environmental concentrations of sediment-associated TBT and TPhT on the freshwater-adapted European flounder, Platichthys flesus (L.). Journal of experimental marine biology and ecology. 256(2): 267-278.
  13. Hasina, B.B., Mithra, D. (2014). Histopathological changes in liver tissue of Heteropneustes fossilis exposed Chlorpyrifos (20% EC). Indian Journal of Applied Research. 4(7): 237-240.
  14. Humason, G.L. (1972). Animal tissue techniques, (3rd Edt.). San Francisco: W.H. Freeman and Company.
  15. Issa, A.M., Gawish, A.M., Esmail, G.M. (2011). Histological Hazards of Chlorpyrifos usage on gills and kidneys of Nile tilapia and the role of Vitamin E supplement. Egypt. Life Science Journal. 8(4): 113-123.
  16. Khan, S., Sharma, N. (2013). Histopathological alterations in the kidney of Gambusia affinis after exposure to chlorpyrifos. Int J Chem Pharm Sci. 1(2): 122-127.
  17. Korn, S., Earnest, R. (1974). Acute toxicity of twenty insecticides to Striped Bass, Morone saxatilis. Calif. Fish Game. 60(3): 128-131.
  18. Kunjamma, K.A., Philip, B., Bhanu, S.V., Jose, J. (2008). Histopathological effects on Oreochromis mossambicus (Tilapia) exposed to chlorpyrifos. J. Environ. Res. Dev. 2(4): 553-559.
  19. Ma, J., Liu, Y., Niu, D., Li, X. (2015). Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase and oxidative stress response of goldfish (Carassius auratus). Environmental toxicology. 30(4): 422-429.
  20. Magar, R.S., Shaikh, A. (2013). Effect of malathion toxicity on detoxifying organ of fresh water fish Channa punctatus. International journal of pharmaceutical, chemical and biological sciences. 3(3): 723-728.
  21. Maharajan, A., Narayanasamy, Y., Ganapiriya, V., Shanmugavel, K. (2015). Histological alterations of a combination of Chlorpyrifos and Cypermethrin (Nurocombi) insecticide in the fresh water crab, Paratelphusa jacquemontii (Rathbun). The Journal of Basic & Applied Zoology. 72: 104-112.
  22. Manjunatha, B., Philip, G.H. (2015). Histopathological alterations in liver anatomy after exposure to chlorpyrifos in zebrafish (Danio rerio). Der. Pharm. Lett. 7: 191-7.
  23. Mataqueiro, M.I., Satiko Okada Nakaghi, L., De Souza, J.P., Da Cruz, C., De Oliveira, G.H., Urbinati, E.C. (2009). Histopathological changes in the gill, liver and kidney of pacu (Piaractus mesopotamicus, Holmberg, 1887) exposed to various concentrations of trichlorfon. Journal of Applied Ichthyology. 25(1): 124-127.
  24. Mathur, S.C., Tannan, S.K. (1999). Future of Indian pesticides industry in next millennium. Pesticide Information. 24(4): 9-23.
  25. Mohamed, F.A. (2009). Histopathological studies on Tilapia zillii and Solea vulgaris from Lake Qarun, Egypt. World Journal of Fish and Marine Sciences. 1(1): 29-39.
  26. Murmu, K., Rasal, K.D., Rasal, A., Sahoo, L., Nandanpawar, P.C., Udit, U.K., Patnaik, M., Mahapatra, K.D., Sundaray, J.K., (2019). Effect of salinity on survival, hematological and histological changes in genetically improved rohu (Jayanti), Labeo rohita (Hamilton, 1822). Indian Journal of Animal Research. 54(6): 673-678.
  27. Muttappa, K., Reddy, H.R.V., Padmanabha, A. (2015). Chlorpyrifos induced histological changes in the liver of tilapia (Oreochromis mossambicus). Int. J. Rec. Sci. Res. 6: 5819-23.
  28. National Registration Authority (NRA) (2000). The NRA Review of Chlorpyrifos, Volume 1, NRA Review Series 00.5. Canberra, Australia: National Registration Authority for Agricultural and Veterinary Chemicals.
  29. Ogueji, E.O., Auta, J., Balogun, J.K., Ibrahim, N.D.G. (2007). The histopathological effects of sublethal doses of chlorpyrifos-ethyl on the liver and gills of African catfish, Clarias gariepinus. Chem Class Journal. 4: 49-59.
  30. Oh, H.S., Lee, S.K., Kim, Y.H., Roh, J.K. (1991). Mechanism of selective toxicity of diazinon to killifish (Oryzias latipes) and loach (Misgurnus anguillicaudatus). In Aquatic Toxicology and Risk Assessment: Fourteenth Volume. ASTM International.
  31. Olurin, K.B., Olojo, E.A.A., Mbaka, G.O., Akindele, A.T. (2006). Histopathological responses of the gill and liver tissues of Clarias gariepinus fingerlings to herbicide, glyphosate. African Journal of Biotechnology. 5(24): 2480.
  32. Oruc, E.O. (2010). Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pesticide biochemistry and physiology. 96(3): 160-166.
  33. Padmanabha, A., Reddy, H.R.V., Khavi, M., Prabhudeva, K.N., Rajanna, K.B. Chethan, N. (2015). Acute effects of chlorpyrifos on oxygen consumption and food consumption of freshwater fish, Oreochromis mossambicus (Peters). International Journal of Recent Scientific Research. 6(4): 3380-3384.
  34. Pal, S., Kokushi, E., Koyama, J., Uno, S., Ghosh, A.R. (2012). Histopathological alterations in gill, liver and kidney of common carp exposed to chlorpyrifos. Journal of Environmental Science and Health, Part B. 47(3): 180-195.
  35. Palanikumar, L., Kumaraguru, A.K., Ramakritinan, C.M., Anand, M. (2014). Toxicity, biochemical and clastogenic response of chlorpyrifos and carbendazim in milkfish Chanos chanos. International Journal of Environmental Science and Technology. 11(3): 765-774.
  36. Pathan, T.S., Shinde, S.E., Thete, P.B., Sonawane, D.L. (2010). Histopathology of liver and kidney of Rasbora daniconius exposed to paper mill effluent. Research Journal of Biological Sciences. 5(5): 389-394.
  37. Qayoom, I., Balkhi, M.H., Shah, F.A., Bhat, B.A. (2018). Toxicological evaluation and effects of organophosphate compounds on hematological profile of juvenile common carps (Cyprinus carpio var. Communis). Indian Journal of Animal Research. 52(10): 1469-1475.
  38. Qayoom, I., Balkhi, M.H., Shah, F.A., Bhat, B.A. (2019). Impairment induced due to organophosphate compounds in some blood biochemical indices of fingerlings of Cyprinus carpio var. communis. Indian Journal of Animal Research. 53 (10): 1326-1328.
  39. Rajini, A., Revathy, K., Selvam, G. (2015). Histopathological changes in tissues of Danio rerio exposed to sub-lethal concentration of combination pesticide. Indian Journal of Science and Technology. 8(18): 1-12.
  40. Rao, J.V., Begum, G., Pallela, R., Usman, P.K., Rao, R.N. (2005). Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos. International Journal of Environmental Research and public health. 2 (3): 478-483.
  41. Rao, J.V., Rani, C.S., Kavitha, P., Rao, R.N., Madhavendra, S.S. (2003). Toxicity of chlorpyrifos to the fish Oreochromis mossambicus. Bulletin of Environmental Contamination and toxicology. 70(5): 0985-0992.
  42. Samajdar, I., Mandal, D.K. (2015). Acute toxicity and impact of an organophosphate pesticide, chlorpyrifos on some haematological parameters of an Indian minor carp, Labeo bata (Hamilton 1822). International Journal of Environmental Sciences. 6(1): 106-113.
  43. Satyavardhan, K. (2010). Effect of Fenvalerate TM on various tissues of Channa punctatus (Bloch). World Applied Sciences Journal. 10(1): 70-74.
  44. Scheil, V., Zurn, A., Kohler, H.R., Triebskorn, R. (2010). Embryo development, stress protein (Hsp70) responses and histopathology in zebrafish (Danio rerio) following exposure to nickel chloride, chlorpyrifos and binary mixtures of them. Environmental toxicology. 25(1): 83-93.
  45. Schwaiger, J., Fent, K., Stecher, H., Ferling, H., Negele, R.D. (1996). Effects of sublethal concentrations of triphenyltinacetate on rainbow trout (Oncorhynchus mykiss). Archives of environmental contamination and toxicology. 30(3): 327-334.
  46. Sharbidre, A.A., Metkari, V., Patode, P. (2011). Effect of methyl parathion and chlorpyrifos on certain biomarkers in various tissues of guppy fish, Poecilia reticulata. Pesticide Biochemistry and Physiology. 101(2): 132-141.
  47. Sharmin, S., Shahjahan, M., Hossain, M.A., Haque, M.A., Rashid, H. (2015). Histopathological changes in liver and kidney of common carp exposed to sub-lethal doses of malathion. Pakistan Journal of Zoology. 47(5): 1495-1498.
  48. Sprague, J.B. (1969). Measurement of pollutant toxicity to fish I. Bioassay methods for acute toxicity. Water Research. 3(11): 793-821.
  49. Srivastava, S.K., Tiwari, P.R., Srivastav, A.K. (1990). Effects of chlorpyrifos on the kidney of freshwater catfish, Heteropneustes fossilis. Bulletin of environmental contamination and toxicology. 45(5): 748-751.
  50. Tilak, K.S., Veeraiah, K., Rao, D.K. (2005). Biochemical changes induced by chlorpyrifos, an organophosphate compound in sublethal concentrations to the freshwater fish Catla catla, Labeo rohita and Cirrhinus mrigala. Journal of environmental biology/Academy of Environmental Biology, India. 26(2): 341-347.
  51. Topal, A., Atamanalp, M., Oruc, E., Demir, Y., Beydemir, S., Isik, A. (2014). In vivo changes in carbonic anhydrase activity and histopathology of gill and liver tissues after acute exposure to chlorpyrifos in rainbow trout. Archives of Industrial Hygiene and Toxicology. 65(4): 377-385.
  52. USEPA, (U.S Environmental Protection Agency) (2003). Guidelines establishing test procedures for the analysis of pollutants, analytical methods for biological pollutants in ambient water; Final U.S. rule. U.S. Federal Register-40 CFR Part. 136(68): 139.
  53. Wijeyaratne, W.M.D.N., Pathiratne, A. (2006). Acetylcholinesterase inhibition and gill lesions in Rasbora caverii, an indigenous fish inhabiting rice field associated waterbodies in Sri Lanka. Ecotoxicology. 15(7): 609-619.
  54. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., Wang, X. (2012a). Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere. 88(4): 377-383.
  55. Yaji, A.J., Auta, J., Oniye, S.J., Adakole, J.A., Usman, J.I. (2011). Effects of cypermethrin on behaviour and biochemical indices of fresh water fish Oreochromis niloticus. Electronic Journal of Environmental, Agricultural & Food Chemistry. 10(2).
  56. Yokote, M. (1982). Digestive system. An atlas of fish histology. Kodansha scientific books, Gustav Fischer, Stuttgart, pp.74-93.

Global Footprints