Body Condition Scoring in Dairy Cows - A Conceptual and Systematic Review

DOI: 10.18805/ijar.B-3859    | Article Id: B-3859 | Page : 929-935
Citation :- Body Condition Scoring in Dairy Cows - A Conceptual and Systematic Review.Indian Journal Of Animal Research.2020.(54):929-935
Abhishek Paul, Santu Mondal, Suresh Kumar, Tripti Kumari abhishek2011v01@gmail.com
Address : Division of Livestock Production Management, National Dairy Research Institute, Karnal-132 001, Haryana, India.
Submitted Date : 11-06-2019
Accepted Date : 20-01-2020

Abstract

As herd sizes have increased in the last decades due to commercialization of dairy sector, computer monitoring solutions, which provide fast and accurate evaluation of body condition score, gain more and more importance. The main reasons that discourage the use of traditional BCS estimation techniques are the lack of computerized reports, its subjectivity in the judgment, observational variations and time consuming on farm training of technicians. Moreover, measurement on a cow must be collected every 30 days interval throughout the lactation period to have valuable information for use in selection indices. However, an automated BCS largely diminishes the need for labor, time and training, be less stressful for the animals, increase accuracy and could provide large volumes of data for use in genetic evaluation. The sonography is also good technique to detect depletion of body fat reserve by measuring back fat thickness (BFT) in conjunction with BCS in dairy cattle. In India, BCS monitoring technique is not well adopted due to lack of farm mechanization, awareness and an extra labor charges, can create a burden on farm finances.

Keywords

Automation Back fat thickness BCS Dairy cattle

References

  1. Alvarez, J.R., Arroquia, M., Mangudoa, P., Tolozaa, J., Jatipa, D., Rodríguez, J.M., Teyseyreb,A., Sanzd, C., Zuninob, A., Machadoa, A., Mateos, C. (2018). Body condition estimation on cows from depth images using Convolutional Neural Networks. Computers and Electronics in Agriculture. 155 (2018): 12-22.
  2. Andrew, S., Waldo, D. and Erdman, R. (1994). Direct analyses of body composition of dairy cows at three physiological stages. J. Dairy Sci. 77: 3022-3033.
  3. Anglart, D., (2010). Automatic estimation of body weight and body condition score in dairy cows using 3d imaging technique (Master’s thesis). Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences.
  4. Azzaro G., Caccamo M., Ferguson J.D., Battiato S., Farinella G.M., Guarnera G.C., Puglisi G.,Petriglieri R. and Licitra G. (2011). Objective estimation of body condition score by modeling cow body shape from digital images. J. Dairy Sci. 94(4): 2126–2137, April 2011. ISSN0022-0302.
  5. Banos G, Coffey MP, Wall E and Brotherstone S (2006). Genetic relationship between first lactation body energy and later-    life udder health in dairy cattle. Journal of Dairy Science. 89: 2222–2232.
  6. Banos G., Brotherstone S., Coffey M.P. (2004). Evaluation of body condition score measured throughout lactation as an indicator of fertility in dairy cattle. Journal of Dairy Science, 87: 2669–2676.
  7. Bell MJ, Maak M, Sorley M and Proud R (2018). Comparison of Methods for Monitoring the Body Condition of Dairy Cows. Front. Sustain. Food Syst. 2:80. doi: 10.3389/fsufs. 2018. 00080.
  8. Bercovich A, Edan Y, Alchanatis V, Moallem U, Parmet Y, et al. (2013). Development of an automatic cow body condition scoring using body shape signature and fourier descriptors.    J Dairy Sci. 96(12): 8047- 8059. 
  9. Berry, D., Macdonals, K., Penno, J. and Roche, R. (2006). Associa- -tion between body condition score and live weight in pasture-based Holstein_Friesian dairy cows. J. Dairy Res. 73: 487-491.
  10. Bewerly, J. and Schuntz, M. (2008). Review: An interdisciplinary review of body condition scoring for dairy cattle. Prof. Anim. Science. 24: 507-529.
  11. Bewley J.M., Peacock, A.M., O. Lewis, R. E. Boyce, D. J. Roberts, M. P. Coffey, S. J. Kenyon and Schutz M.M. (2008). Potential for estimation of body condition scores in dairy cattle from digital images. J. Dairy Sci. 91(9): 3439–3453, September 2008. ISSN 0022-0302.
  12. Britt, J., R. Cushman, C. Dechow, H. Dobson, P. Humblot, M. Hutjens, G. Jones, P. Ruegg, I.Sheldon and J. Stevenson. (2018). Invited review: Learning from the future- A vision for dairy farms and cows in 2067. Journal of Dairy Science. 101(5): 3722-3741.
  13. Buckley F., Dillon P., Rath M., Veerkamp R.F. (2000). The relation- -ship between genetic merit for yield and live weight, condition score and energy balance of spring calving Holstein Friesian dairy cows on grass based systems of milk production. Journal of Dairy Science. 83: 1878–1886.
  14. Caraviello, D., K. Weigel, P. Fricke, M. Wiltbank, M. Florent, N. Cook, K. Nordlund, N. Zwald and C. Rawson. (2006). Survey of management practices on reproductive performance of dairy cattle on large US commercial farms. Journal of Dairy Science. 89(12): 4723-4735.
  15. Collard BL, Boettcher PJ, Dekkers JCM, Peticlerc D and Schaeffer LR (2000). Relationship between energy balance and health traits of dairy cattle in early lactation. Journal of Dairy Science. 83: 2683–2690.
  16. Dechow CD, Rogers GW, Klei L, Lawlor TJ and VanRaden PM (2004). Body condition scores and dairy form evaluations as indicators of days open in US Holsteins. Journal of Dairy Science. 87: 3534–3541.
  17. Earle, D.F. (1976). A guide to scoring dairy cow condition. J. Agric. (Victoria). 74: 228-231.
  18. Edmonson AJ, Lean IJ, Weaver LD, Farver T, Webster G, (1989). A body condition chart for Holstein dairy cows. J Dairy Sci. 72: 68–78.
  19. Enevoldsen, C. and Kristensen, T. (1997). Estimation of body weight from body size measurements and body condition score in dairy cows. J. Dairy Sci. 80: 1988-1995.
  20. Ersbøll, A. K., J. Bruun and N. Toft. (2004). Data analysis. Chap.13 in Introduction to Veterinary Epidemiology. H. Houe, A. K. Ersbøll and N. Toft, ed. Biofolia, Frederiksberg, Denmark.
  21. Evans, D.G. (1978). The interpretation and analysis of subjective body condition scores. Anim. Prod. 26:119-125.
  22. Ferguson, J.D., Galligan, D.T., Thomsen, N., (1994). Principal descriptors of body condition score in holstein cows. J. Dairy Sci. 77(9): 2695–2703.
  23. Fischer A., Luginbühl T., Delattre L., Delouard J.M., Faverdin P., (2015). Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in holstein dairy cows. J Dairy Sci. 98(7): 4465-4476. 
  24. Foschi, G. (2009). Automatic body condition scoring on dairy cows of the Swedish Red breed. MSc Thesis in Animal Science. 289. 1-38. 
  25. Gallo L., Carnier P., Cassandro M., Mantovani R., Bailoni L., Contiero B., Bittante G. (1996). Change in body condition score of Holstein cows as affected by parity and mature equivalent milk yield. Journal of Dairy Science. 79: 1009–1015.
  26. Garnsworthy P.C. (2007). Body condition score in dairy cows: (eds.): Garnsworthy P.C., Wiseman J.. Targets for production and fertility, in recent advances in animal nutrition 2006. Nottingham University Press, Nottingham, UK, 61–86.
  27. Gillund, P., Reksen, O., Gro¨hn, Y. T. and Karlberg, K. (2001). Body condition related to ketosis and reproductive performance in Norwegian dairy cows. J. Dairy Sci. 84: 1390-1396.
  28. Goff JP and Horst RL (1997). Physiological changes at parturition and their relationship to metabolic disorders. Journal of Dairy Science. 80: 1260-1268.
  29. Gomeza, N.A., Conley, A.J., Robinson, P.H. (2018). Effects of long-    term, near-term and real-time energy balance and blood progesterone concentrations, on the pregnancy rate of    contemporary dairy cows. Animal Reproduction Science. 189: 136-145.
  30. Halachmi, P Polak, DJ Roberts, M Klopcic (2008). Cow body shape and automation of condition    scoring. J Dairy Sci. 91(11): 4444–4451. 
  31. Hallén Sandgren and Emanuelson, (2016). Consistency of measure- -ments from an automatic body condition scoring camera.
  32. Hansen, M., Smith, M., Smith, L., Hales, I., Forbes, D. (2015). Non-intrusive automated measurement of dairy cow body condition using 3d video. In: Proceedings of the Machine Vision of Animals and their Behaviour (MVAB). BMVA Press, pp. 1.1–1.8.
  33. Heinrichs, A., Jones, C., Ishler, V. (2017). Body Condition Scoring as a Tool for Dairy Herd Management. Penn State College of Agricultural Sciences.
  34. Horan B., Dillon P., Faverdin P., Delaby L., Buckley F., Rath M. (2005). The interaction of strain of Holstein-Friesian cows and pasture-based feed systems on milk yield, body weight and body condition score. Journal of Dairy Science. 88: 1231–1243.
  35. Jaurena, G., Moorby, J., Fesher, W. and Cantet, R. (2005). Associa- -tion of body weight, loin longissimus dorsi and back fat with body condition score in dry and lactating Holstein dairy cows. Anim. Sci. 80: 219-223.
  36. Kellogg, W. (2010). Body Condition Scoring With Dairy Cattle. University of Arkansas, Division of Agriculture. 
  37. Klawuhn, D. (1992). Vergleichder Ru¨ckenfettdickemitdemu¨berdi. Gesamtko¨rperwasserbestimmung ermittelten Ko¨ rperfettgehalt bei Rindern. Vet. Diss., Humboldt-Univ. Berlin.
  38. Koenen E.P.C., Veerkamp R.F., Dobbelaar P., De Jong G. (2001). Genetic analysis of body condition score of lactating Dutch Holstein and Red-and-White heifers. J. Dairy Sci. 84: 1265–1270.
  39. Koenen, E.P., Veerkamp, R.F., Dobbelaar, P. and De Jong, G. (2001). Genetic analysis of body condition score of lactating Dutch Holstein and Red-and-White heifers. J. Dairy Sci. 84: 1265.
  40. Kristensen, E., L. Dueholm, D. Vink, J.E. Andersen, E.B. Jakobsen, S. Illum-Nielsen, F.A. Petersen and C. Enevoldsen. (2006). Within- and across-person uniformity of body condition scoring in Danish Holstein cattle. J. Dairy Sci. 89: 3721–3728.
  41. Krukowski, M. (2009). Automatic determination of body condition score of dairy cows from 3d images (Master’s thesis). Royal Institute of Technology, School of Computer Science and Communication.
  42. Landsverk, K. (1992). Vurdering av holdet. Buskap og Audratt. 44: 26.
  43. Lowman, B. G., Scott, N. and Somerville, S. H. (1976). ‘Condition scoring of cattle’. East of Scotland College of Agriculture, Bulletin No. 6, Edinburgh, UK. 
  44. Macdonald, K. A. and Roche, J. R. (2004). Condition Scoring Made Easy. Condition Scoring Dairy Herds. 1st ed. Dexcel Ltd., Hamilton, New Zealand. ISBN 0-476- 00217-6.
  45. Maltz, E. (1997). The body weight of dairy cow: III. Use for on-line management of individual cows. Liv. Prod. Sci. 48: 187-    200.
  46. Markusfeld, O., Galon, N., Ezra, E. (1997). Body condition score, health, yield and fertility in dairy cows. Vet. Rec. 141(3): 67–72.
  47. Mazeris, F. (2015). DeLaval body condition scoring BCS: daily, automatic and consistent scoring of cows. Pages 47-50 in Precision Dairy Conference.
  48. Morin, P.A., Y. Chorfi, J. Dubuc, J. P. Roy, D. Santschi and S. Dufour. (2017). Short communication: An observational study inves-tigating inter-observer agreement for variation over time of body condition score in dairy cows. J. Dairy Sci. 100: 3086–3090.
  49. Nicoll, G. (1981). Sources of variation in the condition scoring of cows. Irish journal of agricultural research: 27-33.
  50. Oikonomou G, Arsenos G, Valergakis GE, Tsiaras A, Zygoyiannis D and Banos G (2008). Genetic relationship of body energy and blood metabolites with reproduction in Holstein    cows. Journal of Dairy Science. 91: 4323–4332.
  51. Otto, K., Ferguson, J., Fox, D. and Sniffen, C. (1991). Relationship between body condition score and composition of ninth to eleventh rib tissue in Holstein. J. Dairy Sci. 74: 852- 859.
  52. Paul, A., Bhakat, C., Mondal, S., Mandal, D.K., Mandal, A. and P.R. Ghosh, (2018). Body Condition Score is not a Predictor of Back Fat in Primiparous Crossbred Cattle. International Journal of Basic and Applied Biology. p-ISSN: 2394-5820, e-ISSN: 2349 2539, 5(2): 45-47.
  53. Paul, A., Bhakat, C., Mondal, S., and Mandal, A., (2020). An observational study investigating uniformity of manual body condition scoring in dairy cows. Indian J Dairy Sci. Vol 73, No 1
  54. Philipona C, Zbinden Y, Ku¨ nzi N and Blum JW (2003). Postpartum reproductive function: association with energy, metabolic and endocrine status in high yielding dairy cows. Theriogenology. 59: 1707–1723.
  55. Prasad, S. (1994). Studies on body condition scoring and feeding management in relation to production performance of crossbred dairy cattle. Ph. D. thesis, NDRI Deemed University, Karnal, India.
  56. Pryce J.E., Coffey M.P., Brotherstone S.H., Woolliams J.A (2002). Genetic relationship between    calving interval and body condition score conditional on milk yield. Journal of Dairy    Science. 85: 1590–1595.
  57. Reist M, Erdin DK, von Euw D, Tschu¨ mperlin KM, Leuenberger H, Hammon HM, Morel C, Roche, J.R., Friggens, N.C., Kay, J.K., Fisher, M.W., Stafford, K.J., Berry, D.P. (2009). Invited review: body condition score and its association with dairy cow productivity, health and    welfare. J. Dairy Sci. 92 (12): 5769–5801.
  58. Salau J, Haas JH, Junge W, Bauer U, Harms J, et al. (2014). Feasibility of automated body trait determination using the sr4k time-of-flight camera in cow barns. Springerplus. 3: 225.
  59. Schwager-Suter, R., Stricker, C., Erdin, D. and Kunzi, N. (2000). Relationship between body condition scores and ultrasound measurements of subcutaneous fat and musculus longissimus dorsi in dairy cows differing in size and type. Anim. Sci. 71: 465.
  60. Shelley A.N. (2016). Incorporating machine vision in precision dairy farming technologies. PhD thesis, University of Kentucky.
  61. Song X., E.A.M. Bokkers, S. van Mourik, P.W.G. Groot Koerkamp, P. P. J. van der Tol (2019). Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. Journal of Dairy Science. 102(5): 4294-4308.
  62. Spoliansky R., Edan Y., Parmet Y., Halachmi I. (2016). Development of automatic body condition scoring using a low-cost 3-    dimensional kinect camera. Journal of Dairy Science. 99(9): 7714- 7725. 
  63. Staufenbiel, R. (1997). Konditionsbeurteilung von Milchku¨hen mit Hilfe der sonographischen Ru¨ ckenfettdickenmessung. Prakt. Tierarzt, Coll. Vet. 27: 87–92.
  64. U. J. Schröder and R. Staufenbiel. (2006). Invited review: Methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of backfat thickness. J. Dairy Sci. 89(1):1–14, January 2006. ISSN 0022-0302.
  65. Veerkamp, R. (1998). Selection for economic efficiency of dairy cattle using information on live weight and feed intake: A review. J. Dairy Sci. 81: 1109-1119.
  66. Wildman, E. E., G. M. Jones, P. E. Wagner, R. L. Boman, H. F.Troutt and T. N. Lesch. (1982). A dairy cow body condition scoringsystem and its relationship to selected production characteristics. J. Dairy Sci. 65: 495–497.

Global Footprints