Cloning and Expression of Twin-Arginine Translocation D Family Deoxyribonuclease of Clostridium Chauvoei

DOI: 10.18805/ijar.B-3855    | Article Id: B-3855 | Page : 864-868
Citation :- Cloning and Expression of Twin-Arginine Translocation D Family Deoxyribonuclease of Clostridium Chauvoei.Indian Journal Of Animal Research.2020.(54):864-868
Aakanksha Tiwari, Saroj K. Dangi, Prasad Thomas and Viswas Konasagara Nagaleekar aakanksha2191@yahoo.in
Address : Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243 122, Uttar Pradesh, India. 
Submitted Date : 8-06-2019
Accepted Date : 9-08-2019

Abstract

Clostridium chauvoei, an anaerobic bacterium reported worldwide, is responsible for Black Quarter, a dreadful disease of ruminants. This bacterium produces many toxins responsible for the pathogenesis of the disease. Except for the well-studied virulence factors such as cctA, flagellin andsialidase genes, the exact role of other toxins of C. chauvoei remains unknown. This necessitates studies on the activities of the C. chauvoei toxins and virulence. In the present study, Twin-Arginine Translocation D (TatD) family deoxyribonuclease of the bacterium was selected. The tatD gene C. chauvoei was amplified by PCR and cloned into p-Rham-N-His-SUMO-Kan expression vector, followed by transformation into the E.cloni 10G competent cells. Clones obtained were confirmed by colony PCR. These tatDclones were sequenced and analysed phylogenetically, which revealed the close relationship of C. chauvoei strain to C. isatidis, C. saccharobutylicum, C. botulinum and C. taeniosporum based on tatD sequence analysis. Upon induction of the clones with L-rhamnose,the protein expression was obtained at 42.3 kDa and the same was further confirmed by Western blotting.

Keywords

Black quarter Clostridium chauvoei TatD deoxyribonuclease

References

  1. Burchhardt G and Dürre P. (1990). Isolation and characterization of DNase-deficient mutants of clostridium acetobutylicum. Current Microbiology. 21(5): 307-11.
  2. Carloni G H, Bentancor L D and De Torres R A. (2005). Deoxyribonuclease activity detection in clostridium chauvoei strains. Rev Argent Microbiol. 37(2): 87-8.
  3. Chang Z, Jiang N, Zhang Y, Lu H, Yin J, Wahlgren M, Cheng X, Cao Y and Chen Q. (2016). The TatD-like DNase of Plasmodium is a virulence factor and a potential malaria vaccine candidate. Nat Commun. 7: 11537.
  4. Chaudhuri P and Singh S D. (1992). Modified methods for simple and rapid detection of bacterial deoxyribonuclease production. Journal of Microbiological Methods. 16(4): 307-11.
  5. Chen Y C, Li C L, Hsiao Y Y, Duh Y and Yuan H S. (2014). Structure and function of TatD exonuclease in DNA repair. Nucleic Acids Res. 42(16): 10776-85.
  6. Cortiñas T I, Mattar M A and de Guzmán A M S. (1999). Alpha and beta toxin activities in local strains of Clostridium chauvoei. Anaerobe. 5(3-4): 297-99.
  7. Dangi S K, Yadav P K, Mashooq M, Agarwal R K and Nagaleekar V K. (2018). Cloning and expression analysis of nagJ hyaluronidase gene of Clostridium chauvoei. Indian Journal of Animal Sciences. 88(3): 304-06.
  8. Dangi S K, Yadav P K, Tiwari A and Nagaleekar V K. (2017). Cloning and sequence analysis of hyaluronoglucosaminidase (nagH) gene of clostridium chauvoei. Vet World. 10(9): 1104-07.
  9. Durre P. (2014). Physiology and sporulation in clostridium. Microbiol Spectr. 2(4): 0010-2012.
  10. Falquet L, Calderon-Copete S P and Frey J. (2013). Draft genome sequence of the virulent clostridium chauvoei Reference Strain JF4335. Genome Announc. 1(4): 00593-13.
  11. Frey J and Falquet L. (2015). Patho-genetics of clostridium chauvoei. Res Microbiol. 166(4): 384-92.
  12. Frey J, Johansson A, Burki S, Vilei E M and Redhead K. (2012). Cytotoxin CctA, a major virulence factor of clostridium chauvoei conferring protective immunity against myonecrosis. Vaccine. 30(37): 5500-5.
  13. Hatheway C L. (1990). Toxigenic clostridia. Clinical microbiology reviews. 3(1): 66-98.
  14. Hielm S, Björkroth J, Hyytiä E and Korkeala H. (1998). Genomic analysis of clostridium botulinum group II by pulsed-field gel electrophoresis. Applied and Environmental Microbiology. 64(2): 703-08.
  15. Kojima A, Uchida I, Sekizaki T, Sasaki Y, Ogikubo Y, Kijima M and Tamura Y. (2000). Cloning and expression of a gene encoding the flagellin of clostridium chauvoei. Vet Microbiol. 76(4): 359-72.
  16. Koneman E W. (1997). Color Atlas and Textbook of Diagnostic Microbiology. edn 5th. Lippincott, Philadelphia.
  17. Kumar S, Mashooq M, Gandham R K, Alavandi S V and Nagaleekar V K. (2018). Characterization of quorum sensing system in Clostridium chauvoei. Anaerobe. 52: 92-99.
  18. Moussa R S. (1958). Complexity of toxins from clostridium septicum and clostridium chauvoei. Journal of bacteriology. 76(5): 538-45.
  19. Nagano N, Isomine S, Kato H, Sasaki Y, Takahashi M, Sakaida K, Nagano Y and Arakawa Y. (2008). Human fulminant gas gangrene caused by Clostridium chauvoei. J Clin Microbiol. 46(4): 1545-7.
  20. Princewill T J and Oakley C L. (1976). Deoxyribonucleases and hyaluronidases of Clostridium septicum and Clostridium chauvoei. III. Relationship between the two organisms. Med Lab Sci. 33(2): 10-118.
  21. Ramagli L S and Rodriguez L V. (1985). Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis. 6(11): 559-63.
  22. Sasaki Y, Yamamoto K, Kojima A, Tetsuka Y, Norimatsu M and Tamura Y. (2000). Rapid and direct detection of clostridium chauvoei by PCR of the 16S-23S rDNA spacer region and partial 23S rDNA sequences. J Vet Med Sci. 62(12): 1275-81.
  23. Sathish S and Swaminathan K. (2008). Molecular characterization of the diversity of Clostridium chauvoei isolates collected from two bovine slaughterhouses: analysis of cross-contamination. Anaerobe. 14(3): 190-9.
  24. Songer J G. (1998). Clostridial diseases of small ruminants. Vet Res. 29(3-4): 219-32.
  25. Swiatek P J, Allen S D, Siders J A and Lee C H. (1987). DNase production by clostridium septicum. Journal of clinical microbiology. 25(2): 437-38.
  26. Tamura K, Stecher G, Peterson D, Filipski A and Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 30(12): 2725-9.
  27. Tamura Y, Kijima-Tanaka M, Aoki A, Ogikubo Y and Takahashi T. (1995). Reversible expression of motility and flagella in clostridium chauvoei and their relationship to virulence. Microbiology. 141(Pt 3): 605-10.
  28. Tamura Y, Minamoto N and Tanaka S. (1984). Demonstration of protective antigen carried by flagella of clostridium chauvoei. Microbiol Immunol. 28(12): 1325-32.
  29. Thomas P, Semmler T, Eichhorn I, Lubke-Becker A, Werckenthin C, Abdel-Glil M Y, Wieler L H, Neubauer H and Seyboldt C. (2017). First report of two complete clostridium chauvoei genome sequences and detailed in silico genome analysis. Infect Genet Evol. 54: 287-98.
  30. Timmis K and Winkler U. (1973). Isolation of covalently closed circular deoxyribonucleic acid from bacteria which produce exocellular nuclease. Journal of bacteriology. 113(1): 508-09.
  31. Towbin H, Staehelin T and Gordon J. (1979). Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications. Proceedings of the National Academy of Sciences of the United States of America. 76(9): 4350-54.
  32. Vilei E M, Johansson A, Schlatter Y, Redhead K and Frey J. (2011). Genetic and functional characterization of the NanA sialidase from clostridium chauvoei. Veterinary Research. 42(1): 2.
  33. Wexler M, Sargent F, Jack R L, Stanley N R, Bogsch E G, Robinson C, Berks B C and Palmer T. (2000). TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. J Biol Chem. 275(22): 16717-22. 

Global Footprints