Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 7 (july 2020) : 820-828

Status of Oxidative Stress in Cerebral Cortex and Testes, Acetylcholinesterase Activity in Cerebral Cortex and Sperm Parameters in Cadmium-Exposed Rats

C.N. Makwana, S.S. Rao, U.D. Patel, C.M. Modi, H.B. Patel, D.T. Fefar
1Department of Veterinary Pharamacology and Toxicology, Junagadh Agricultural University, Junagadh-362 001, Gujarat, India.
Cite article:- Makwana C.N., Rao S.S., Patel U.D., Modi C.M., Patel H.B., Fefar D.T. (2019). Status of Oxidative Stress in Cerebral Cortex and Testes, Acetylcholinesterase Activity in Cerebral Cortex and Sperm Parameters in Cadmium-Exposed Rats. Indian Journal of Animal Research. 54(7): 820-828. doi: 10.18805/ijar.B-3844.
The present study was carried out to evaluate oxidative stress mediated pathophysiological alterations in brain cerebral cortex and testes of rats exposed to cadmium chloride at 15, 50 and 100 ppm in drinking water for 28 days. The activity of SOD in brain of rats of all toxicity groups was non- significantly decreased. The SOD activity in testes was significantly decreased in animals exposed to 50 and 100 ppm level of cadmium. The catalase activity in brain cerebral cortex and testes was significantly decreased in dose dependent manner. The GSH levels in brain and testes tissue were increased at all tested levels of exposure of cadmium. The acetylcholinesterase activity in brain of rats exposed all levels of Cd were significantly decreased. Cadmium exposure at 100 ppm level significantly reduced the total epididymal sperm count. However, the epididymal sperm motility was significantly reduced in rats exposed to all tested levels of cadmium. The different levels of cadmium exposure produced pathological lesions in brain cerebral cortex and testes which were remarkable at 100 ppm level of exposure as compared to other levels of exposure in rats. In conclusion, cadmium exposure at 100 ppm for 28 days in rats produced marked alterations in both brain and testes through oxidative insult.       
  1. Acharya, U.R., Mishra, M., Patro, J., Panda, M.K. (2008). Effect of vitamins C and E on spermatogenesis in mice exposed to cadmium. Reproductive Toxicology. 25(1): 84–88.
  2. Aebi, H., Sonja, R., Bernhard, S., Frantisek, S. (1974). Heterogeneity of erythrocyte catalase Ï, isolation and characterization of normal and variant erythrocyte catalase and their subunits. European Journal of Biochemistry. 48(1): 137-145.
  3. Antonio, M. T., Lopenz, N., Leret, M. I. (2002). Cadmium poisoning during development alters cerebellar and striatal function in rats. Toxicology. 176(1-2): 59-66.
  4. Aruldhas, M. M., Subramanian, S., Seker, P., Vengatesh, G., Chandrahasan, G., Govindarajulu, P., Akbarasha M A. (2005). Chronic chromium exposure-induced changes in testicular histoarchitechitecture are associated with oxidative stress: study in a non-    human primate (Macaca radiata Geoffroy). Human Reproduction. 20: 2801-2813.
  5. Benoff, S., Hauser, R., Marmar, J. L., Hurley, I. R., Napolitano, B., Centola, G.M. (2009). Cadmium concentrations in blood and seminal plasma: correlations with sperm number and motility in three male populations (infertility patients, artificial insemination donors and unselected volunteers). Molecular Medicine. 15(7-8): 248–262.
  6. Bhatnagar, M., Rao, P., Saxena, R., Bhatnagar, A.R., Meena, P., Barbar, S., Chouhan, A., Vimal, S. (2006): Biochemical changes in brain and other tissues of young adult female mice from fluoride in their drinking water. Fluoride. 39: 280-4. 
  7. Blanco, A., Moyano, R., Vivo, J., Flores-Acuña, R., Molina, A., Blanco, C., Agüera, E. & Monterde, J. G. (2007). Quantitative changes in the testicular structure in mice exposed to low doses of cadmium. Environmental Toxicology and Pharmacology. 23:96-101.
  8. Bouaziz, H., Amara, I.B., Essefi, M., Croute, F., Zeghal, N. (2010). Fluoride-induced brain damages in suckling mice. Pesticide Biocheistry and Physiology. 96: 24-9.
  9. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry. 72(1-2): 248–254.
  10. Casalino, E., Calzaretti, G., Sblano, C., Landriscina, C. (2002). Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology, 179: 37-50.
  11. Ciftci, O., Aydin, M., Ozdemir, I., Vardi, N. (2012). Quercetin prevents 2,3,7,8-tetrachlorodibenzo-p-dioxininduced testicular damage in rats. Andrologia. 44(3): 164–173.
  12. Cooper, A. J. L. (1997). Glutathione in the brain: disorders of glutathione metabolism. In: Rosenberg RN, Prusiner SB, Dimauro S, Barchi RL, Kunk LM (eds). The Molecular and Genetic Basis of Neurological Disease. Boston: Butterworth-Heinemann, pp. 1195–1230.
  13. CPCSEA guidelines for laboratory animal facility, (2003). Indian Journal of Pharmacology. 35(1): 257-274
  14. Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., et al. (2010). Cadmium stress: an oxidative challenge. Biometals. 23(5): 927–940.
  15. De Souza Predes, F., Diamante, M. A. S., Dolder, H. (2010). Testes response to low doses of cadmium in Wistar rats. International Journal of Experimental Pathology. 91(2): 125–131.
  16. Devi, C.B., Konduru, K.K. (2018). Effect of cadmium exposure on cholinergic system and energy metabolism of rat brain: reversal effect of á-tocopherol. International Journal of Pharmceutical Science and Research. 9(1): 373-81. 
  17. Ellman, G. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 82(1): 70-77.
  18. Ellman, G. L., Courtney, K. D., Valentino, J. R., Featherstone, R. M. (1960). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemica Pharmacology, 7(1): 88-95.
  19. El-Shahat, A. E., Gabr, A., Meki, A. R. and Mehana, E. S. (2009). Altered testicular morphology and oxidative stress induced by cadmium in experimental rats and protective effect of simultaneous green tea extract. International Journal of Morphology. 27(3): 757-764.
  20. Fay, R. M., Mumtaz, M. M. (1996). Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the HazDat database. Food Chemical Toxicology. 34(11): 1163-1165.
  21. G.G. Akunna, E.N. Obikili, G.E. Anyawu, E.A. Esom, (2017). Evidences for spermatozoa toxicity and oxidative damage of cadmium exposure in rats. Journal of Pharmacology and Toxicology. 12: 50-56.
  22. Gomathy, M. and Sabarinathan K.G. (2010). Microbial mechanisms of heavy metal tolerance- a review. Agricultural Reviews. 31(2): 133-138.
  23. Harris, E.D. (1992). Regulation of antioxidant enzymes. FASEB J. 6: 2675-83.
  24. Hussain, T., Shukla, G. S., Chandra, S. V. (1987). Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharmacology and Toxicology. 60(5): 355-359.
  25. Hussain, T., Shukla, G.S., Chandra, S.F. (1987). Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats. In vivo and in vitro studies. Pharmacology and Toxicology. 60: 355-358.17.
  26. Jiraungkoorskul K. and Jiraungkoorskul W. (2016). Moringa oleifera: A new challenge reducing heavy metal toxicity: A review. Indian Journal of Agricultural Research. 50(3): 199-205.
  27. Khan, M. H. A., Parvez, S. (2015). Hesperidin ameliorates heavy metal induced toxicity mediated by oxidative stress in brain of Wistar rats. Journal of Trace Elements in Medicine and Biology, 31: 53-60.
  28. Khan, P. K., Sinha, S. P. (1996). Ameliorating effects of vitamin C on murine sperm toxicity induced by three pesticides (endosulfan, phosphamidon and mancozep). Mutagen, 11(1): 33-36.
  29. Kikelomo, F; Ola-Mudathir., Stephen, M. S., Michael, A. F., Udoka E. O., Toyin, Y. F. (2008). Protective roles of onion and garlic extracts on cadmium-induced changes in sperm characteristics and testicular oxidative damage in rats. Food and Chemical Toxicology. 46(12): 3604–3611.
  30. Luna, L. G. (1968). Routine staining procedures. Hematoxylin and eosin stains. Manual of histologic staining methods of the Armed Forces Institute of Pathology. (McGraw-Hill, New York), 3rdedn. 32-39.
  31. Marklund, S., Marklund, G. (1974). Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3): 469-474.
  32. Meeker, J. D., Rossano, M. G., Protas, B., Diamond, M. P., Puscheck, E., Daly, D. Paneth, N., Wirth, J. J. (2008). Cadmium, lead and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant. Environmental Health Perspective. 116(11):1473–1479.
  33. Mohamed, D., Saber, A., Omar, A., Soliman, A. (2014). Effect of cadmium on the testes of adult albino rats and the ameliorating effect of Zinc and Vitamin E. British Journals of Science. 11(1): 72-94.
  34. O’Donnell, L.; Nicholls, P. K.; O’Bryan, M. K.; McLachlan, R. I. and Stanton, P. G. (2014). Spermiation: The process of sperm release. Spermatogenesis. 1(1): 14–35.
  35. Ogunrinola, O. O., Wusu, A. D., Fajana, O. O., Olaitan, S. N., Smith, Z. O., Bolaji, A. R. I. (2016). Effect of low level cadmium exposure on superoxide dismutase activity in rat. Tropical Journal of Pharmaceutical Research. 15(1): 115-119.
  36. Okabe, M., Hosokawa, T., Saito, S., Saito, T., Kurasaki, M., Shimizu, H., Richard, M. J. (2000). Co-localization of Cu/Zn-superoxide dismutase (SOD-1), nitric oxide synthase (NOS), and Zn/ Cu-metallothionein (MT) in rat brain, In: Trace elements in man and animals, 10 (Eds. A. M. Roussel, R. A. Anderson, and A. E. Favrier). Plenum Publishers, New York. pp: 105-109.
  37. Ola-Mudathir, K. F., Suru, S. M., Fafunso, M. A., Obioha, U. E., Faremi, T. Y. (2008). Protective roles of onion and garlic extracts on cadmium induced changes in sperm characteristics and testicular oxidative damage in rats. Food and Chemical Toxicology. 46(12): 3604-3611.
  38. Olney, J. W., Collins, R. C., Sloviter, R. S. (1986). Exotoxic mechanisms of epileptic brain damage. Advance in Neurology. 44: 857-877.
  39. Pandya, C., Pillai, P., Nampoothiri, L. P., Bhatt, N., Gupta, S., Gupta, S. (2012). Effect of lead and cadmium co-exposure on testicular steroid metabolism and antioxidant system of adult male rats. Andrologia. 44(1): 813–22.
  40. Reddy, G.R., Devi, B.C., Chetty, C.S. (2007). Develop-mental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology. 28: 402-7. 
  41. Santos, F.W., Oro, T., Zeni, G.., Rocha, J. B. T., Nascimento, P. C. & Nogueira, C. W. (2004). Cadmium induced testicular damage and its response to administration of succimer and diphenyl diselenide in mice. Toxicology Letter. 152(1): 255-263.
  42. Shagirtha, K., Muthumani, M. and Miltonprabu, S. (2011). Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. European Review for Medical and Pharmacological Sciences. 15(9): 1039-1050.
  43. Shukla, A., Shukla, G.S., Shrimal R.C. (1996). Cadmium-induced alterations in blood- brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Human & Experimental Toxicology. 5(5): 400-405.
  44. Shukla, G.S. Hussain, T., Shrivasta, R.S., Chandra S.V. (1989). Glutathione peroxidase and catalase in liver, kidney, testes and brain regions of rats following cadmium exposure and subsequent withdrawal. Industrial Health. 27: 59-69. 
  45. Siu, E. R., Mruk, D. D., Porto, C. S., Cheng, C. Y. (2009). Cadmium-induced testicular injury. Toxicology and Applied Pharmacology. 238(3): 240–249.
  46. Slott, V.L., Suarez, J. D., Perreault, S. D. (1991). Rat sperm motility analysis: methodologic considerations. Reproductive Toxicology. 5(5): 449-458.
  47. Snedecor, G. W., Cochran, W. G. (1980). Statistical Methods, 8thedn. Ames: Iowa State.
  48. Tobwala, S, Hsiu-Jen, W., Carey, J.W., Banks, W.A., Ercal, N. (2014).Effects of lead and cadmium on brain endothelial cell survival, monolayer permeability, and crucial oxidative stress markers in an in Vitro model of the blood-brain barrier. Toxics. 2: 258-275
  49. Tsakiris, S., Angelogianni, P., Schulpis, K. H., Starridis, J. C. (2000). Protective effect of L-Phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clinical Biochemistry. 33(2): 103-106.
  50. Viaene, M. K., Masschelein, R., Leenders, J. (2000). Neurobehavioral effects of occupational exposure to cadmium: a cross sectional epidemiological study. Journal of Occupational and Environmental Medicine. 57(1): 19–27.
  51. Waisberg, M., Joseph, P., Hale, B., Beyersmann, D. (2013). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 192(2-3): 95–117.
  52. Wang, J., Zhu, H., Zhang, C., Wang H. and Yang Z. (2019). Baicalein ameliorates cadmium-induced hepatic and renal oxidative damage in rats. Indian Journal of Animal Research. 53(4): 523-527. 
  53. Wang, W.X., Liao, H.Z., Li, F.P. (2006). Effects of tea polyphenols on promoting excretion of cadmium. International Journal of Preventive Medicine. 12(5): 3–5.
  54. World Health Organization, (1992). Environmental health criteria 134, Cadmium. Cited as: http://www.inchem.org/documents/ehc/ehc/ehc134.htm, 20, July, 2018.
  55. Yari, A., Asadi, M. H., Bahadoran, H., Dashtnavard, H., Imani, H., Naghii, M. R. (2010). Cadmium toxicity in spermatogenesis and protective effects of L-carnitine in adult male rats. Biological Trace Element Research. 137(2): 216–225.
  56. Zalups, R. K., Ahmad, S. (2003). Molecular handling of cadmium in transporting epithelia. Toxicology and Applied Pharmacology. 186(3): 163-188. 

Editorial Board

View all (0)