Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 7 (july 2020) : 805-812

Single nucleotide polymorphism in TLR1 and TNFá genes and their association with susceptibility to bovine tuberculosis

Ashish Bhaladhare, Anuj Chauhan, Arvind Sonwane, Amit Kumar, Ran Vir Singh, Chandan Prakash, Sushil Kumar, Pushpendra Kumar, Subodh Kumar, Bharat Bhushan
1ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly- 243 122, Uttar Pradesh, India.
Cite article:- Bhaladhare Ashish, Chauhan Anuj, Sonwane Arvind, Kumar Amit, Singh Vir Ran, Prakash Chandan, Kumar Sushil, Kumar Pushpendra, Kumar Subodh, Bhushan Bharat (2019). Single nucleotide polymorphism in TLR1 and TNFá genes and their association with susceptibility to bovine tuberculosis. Indian Journal of Animal Research. 54(7): 805-812. doi: 10.18805/ijar.B-3831.
Identification of genetic predispositions to susceptibility towards bovine tuberculosis (bTB) for the purpose of improving herd resistance to bTB through marker/genomic selection has been one of the thrust areas of research in animal production. Immune response genes, such as Toll Like Receptors (TLRs) which are involved in mycobacterial recognition and activation of innate and adaptive immune responses and Tumor Necrosis Factor alpha (TNFá) which is a vital pro-inflammatory cytokine with pleiotropic roles in immune response that enables mounting of a strong microbicidal action, are potential strong candidates for exploring genetic basis of resistance. Present investigation was aimed at exploring the association of three SNPs (rs43702940, rs68343175 and rs55617317) in TLR1 gene and one SNP (rs109967811) in TNFá gene with susceptibility to bTB infection in cattle. In a case-control population of bTB established using single intradermal tuberculin test, three of the investigated SNPs were found to be polymorphic while rs43702940 revealed monomorphism. SNP loci rs109967811 in TNFá gene was found to be significantly (P < 0.01) associated with susceptibility to bTB in the study population. These findings suggest that SNPs rs109967811 located in exonic region of TNFá can likely serve as a potential marker against bTB infection in cattle upon validation in independent, larger resource population.
  1. Ameni, G., Aseffa, A., Engers, H., Young, D., Gordon, S., Hewinson, G., Vordermeier, M. (2007). Both prevalence and severity of pathology of bovine tuberculosis are higher in Holsteins than in Zebu breeds under field cattle husbandry in central Ethiopia. Clinical Vaccine Immunology. 14(10): 1356-1361. 
  2. Baqir, M., Bhusan, S., Kumar, A., Chauhan, A., Sonwane, A., Kumar, P., Yadav, R., Shukla, S.K., Maurya, S., Maurya, R.V., Sharma, D. (2015). Association of Single Nucleotide Polymorphisms in the DC-SIGN and SP110 Genes with Bovine Tuberculosis in Cattle. Journal of Pure and Applied Microbiology. 9 (Special Edition): 119-125
  3. Baqir, M., Bhusan, S., Kumar, A., Sonawane, A., Singh, R.V., Chauhan, A., Yadav, R., Prakash, O., Renjith, R., Baladhare, A., Sharma, D. (2016). Association of polymorphisms in SLC11A1 gene with bovine tuberculosis trait among Indian cattle. Journal of Applied Animal Research. 44(1): 380-383.
  4. Baqir, M., Bhusan, S., Sharma, D., Kumar, A., Saminathan, M., Dhama, K., Bhaladhare, A., Yadav, R., Prakash, O., Renjith, R., Sonwane, A., Kumar, P., Chauhan, A. (2014). Bovine IL12RB1, IL12RB2 and IL23R Polymorphisms and Bovine Tuberculosis (bTB) Infection status. Journal of Pure and Applied Microbiology. 8(5): 4117-4124 
  5. Bermingham, M.L., Bishop, S.C., Woolliams, J.A., Pong-Wong, R., Allen, A.R., McBride, S.H., Ryder, J.J., Wright, D.M., Skuce, R.A., McDowell, S.W., Glass, E. J. (2014). Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity. 112 (5): 543-51.
  6. Bermingham, M.L., More, S.J., Good, M., Cromie, A.R., Higgins, I.M., Brotherstone, S., Berry, D.P. (2009). Genetics of tuberculosis in Irish Holstein-Friesian dairy herds. Journal of Dairy Science. 92 (7): 3447-56. 
  7. Bhaladhare, A., Chauhan, A., Sonwane, A., Kumar, A., Kumar, P., Kumar, S., Kumar, S., Panigrahi, M., Bhushan, B. (2019). Association of Single Nucleotide Polymorphisms in IFNGR1 and IFNGR2 genes with bovine tuberculosis. Indian Journal of Animal Research. DOI:10.18805/ijar.B-3733
  8. Bhaladhare, A., Sharma, D., Chauhan, A., Kumar, A., Sonwane, A., Singh, R., Kumar, P., Kumar, S., Bhushan, B. (2018). Association study of Single Nucleotide Polymorphisms (SNP) in Toll-like Receptor 9 gene with bovine tuberculosis. Indian Journal of Animal Research. 52 (4): 533-537
  9. Bhaladhare, A., Sharma, D., Kumar, A., Sonwane, A., Chauhan, A., Singh, R., Kumar, P., Yadav, R., Baqir, M., Bhushan, B., Prakash, O. (2016). Single nucleotide polymorphisms in toll-like receptor genes and case-control association studies with bovine tuberculosis. Veterinary World. 9(5): 458-464.
  10. Bradley, J.R. (2008). TNF-mediated inflammatory disease. J Pathol. Molecular and cellular themes in inflammation and immunology. Special Issue: 214(2):149-160.
  11. Brotherstone, S., White, I.M., Coffey, M., Downs, S.H., Mitchell, A.P., Clifton-Hadley, R.S., More, S.J., Good, M., Woolliams, J.A. (2010). Evidence of genetic resistance of cattle to infection with Mycobacterium bovis. Journal of Dairy Science, 93(3): 1234-1242.
  12. Cheng, Y., Huang, C., Tsai, H.J. (2016a). Relationship of bovine TNF-á gene polymorphisms with the risk of bovine tuberculosis in Holstein cattle. Journal of Veterinary Medicine Science. 78(5): 727-732.
  13. Cheng, Y., Huang, C., Tsai, H.J. (2016b). Relationship of bovine NOS2 gene polymorphisms to the risk of bovine tuberculosis in Holstein cattle. Journal of Veterinary Medicine Science. 78(2): 281-286.
  14. Cheng, Y., Huang, C.S., Tsai, H.J. (2016). Relationship of bovine TNF-á gene polymorphisms with the risk of bovine tuberculosis in Holstein cattle. Journal of Veterinary Medicine Science. 78(5): 727-732.
  15. Corner, L.A. (2006). The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk. Veterinary Microbiology, 112: 303-312
  16. Cousins DV. (2001). Mycobacterium bovis infection and control in domestic livestock. Revue Scientifique et Technique. 20(1):71-85.
  17. De la Rua-Domenech, R., Goodchild, A.T., Vordermeier, H.M., Hewinson, R.G., Christiansen, K.H., Clifton-Hadley, R.S. (2006). Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, ã-interferon assay and other ancillary diagnostic techniques. Revue Scientifique et Technique. 81(2): 190-210.
  18. Hlokwe, T.M., Van, Helden, P., Michel, A.L. (2014). Evidence of increasing intra and inter-species transmission of Mycobacterium bovis in South Africa: are we losing the battle? Preventive Veterinary Medicine. 115(1):10-7.
  19. Kawai, T., Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nature Immunology. 11(5): 373-84
  20. Kawasaki, T., Kawai, T. (2014a). Toll-Like Receptor Signaling Pathways. Front Immunology. 5: 461.
  21. Kawasaki, Y., Aoki, Y., Magata, F., Miyamoto, A., Kawashima, C., Hojo, T., Okuda , K., Shirasuna, K., Shimizu, T. (2014b). The effect of single nucleotide polymorphisms in the tumor necrosis factor-á gene on reproductive performance and immune function in dairy cattle. Journal of Reproduction and Development. 60(3): 173-178.
  22. Kumar, S., Kumar, S., Singh, R., Chauhan, A., Agrawal, S., Kumar, A., Singh, S. (2017). Investigation of genetic association of single nucleotide polymorphisms in SP110 gene with occurrence of paratuberculosis disease in cattle. International Journal of Livestock Research. 7(3): 81-88. 
  23. Kumar, S., Singh, RV., Chauhan, A., Sonwane, A., Kumar, S. (2018a). Candidate gene polymorphism vis-a-vis immune response to important infectious diseases in Bovines. International Journal of Current Microbiology and Applied Sciences. 7(8): 1820-1834.
  24. Kumar, S., Chauhan, A., Baranwal, A., Sonwane, A., Kumar, S., Singh, RV. (2018b). Host genetic resistance to mycobacterial infections in bovines. Journal of Entomology and Zoology Studies. 6(6): 1102-1106.
  25. Kumar, S., Singh, R.V., Kumar, S., Chauhan, A., Kumar, A., Bharati, J., Singh, S.V. (2019a). Association of Bovine CLEC7A gene polymorphism with host susceptibility to paratuberculosis disease in Indian cattle. Research in Veterinary Science. 123: 216-222.
  26. Kumar, S., Kumar, S., Singh, RV., Chauhan, A., Kumar, A., Bharati, J. and Singh, SV. (2019b). Genetic association of polymorphisms in bovine TLR2 and TLR4 genes with Mycobacterium avium subspecies paratuberculosis infection in Indian cattle population. Veterinary Research Communications.
  27. Le, Roex, N., Koets, A.P., van, Helden, P.D., Hoal, E.G. (2013). Gene polymorphisms in African buffalo associated with susceptibility to bovine tuberculosis infection. PLoS ONE. 8(5): e64494.
  28. Lin, J., Zhao, D., Wang, J., Wang, Y., Li, H., Yin, X., Yang, L., Zhou, X. (2015). Transcriptome changes upon in-vitro challenge with Mycobacterium bovis in monocyte derived macrophages from bovine tuberculosis infected and healthy cows. Veterinary Immunology and Immunopathology. 163 (3-4): 146-156.
  29. Magee, D.A., Taraktsoglou, M., Killick, K.E., Nalpas, N.C., Browne, J.A., Park, S.D., Conlon, K.M., Lynn, D.J., Hokamp, K., Gordon, S.V., Gormley, E., MacHugh, D.E. (2012). Global gene expression and systems biology analysis of bovine monocyte- derived macrophages in response to in vitro challenge with Mycobacterium bovis. PLoS One. 7(2): e32034.
  30. Mishra, C., Kumar, S., Panigrahi, M., Yathish, H.M., Chaudhary, R., Chauhan, A., Kumar, A and Sonawane, A.A. (2017). Single Nucleotide Polymorphisms in 5' Upstream Region of Bovine TLR4 Gene Affecting Expression Profile and Transcription Factor Binding Sites. Animal Biotechnology. 29(2): 119-128
  31. More, S.J., Radunz, B., Glanville, R.J. (2015). Review: Lessons learned during the successful eradication of bovine tuberculosis from Australia. Veterinary Record. 177 (9): 224-232.
  32. Mukherjee, F. (2006). Comparative prevalence of tuberculosis in two dairy herds in India. Revue Scientifique et Technique. 25(3): 1125-1130. 
  33. Neill, S., Bryson, D., Pollock, J. (2001). Pathogenesis of tuberculosis in cattle. Tuberculosis. 81: 79-86.
  34. Perry, B.D., Grace, D., Sones, K. (2013). Current drivers and future directions of global livestock disease dynamics. Proc Natl Acad Sci USA. 110(52): 20871-20877.
  35. Prakash, O., Kumar, A., Sonwane, A., Rathore, R., Singh, R.V., Chauhan, A., Kumar, P., Renjith, R., Yadav, R., Bhaladhare, A., Baqir, M., Sharma, D. (2014). Polymorphism of cytokine and innate immunity genes associated with bovine brucellosis in cattle. Molecular Biology Report. 41(5): 2815-2825.
  36. Prakash, C., Kumar, P., Joseph, B., Niranjan, A.K., Sharma,D., Chauhan, A., Shukla, S.K. and Verma, R. (2015) Evaluation of different diagnostic tests for detection of tuberculosis in cattle. Indian Journal of Veterinary Pathology. 39 (1): 1-4.
  37. Qidwai T., Khan, F. (2011). Tumour necrosis factor gene polymorphism and disease prevalence. Scandian Journal of Immunology. 74(6): 522-547.
  38. Raphaka, K., Matika, O., Sánchez-Molano, E., Mrode, R., Coffey, M.P., Riggio, V., Glass, E.J., Woolliams, J.A., Bishop, S.C., Banos, G. (2017). Genomic regions underlying susceptibility to bovine tuberculosis in Holstein-Friesian cattle. BMC Genetics. 18(1): 27.
  39. Richardson, I.W., Bradley, D.G., Higgins, I.M., More, S.J., McClure, J., Berry, D.P. (2014). Variance components for susceptibility to Mycobacterium bovis infection in dairy and beef cattle. Genet Selection Evolution. 46 (1): 77.
  40. Roach, D.R., Bean, A.G., Demangel, C., France, M.P., Briscoe, H., Britton, W.J. (2002). TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. Journal of Immunology. 168(9): 4620-4627.
  41. Schiller, I., Oesch, B., Vordermeier, H.M., Palmer, M.V., Harris, B.N., Orloski, K.A., Buddle, B.M., Thacker, T.C., Lyashchenko, K.P., Waters, W.R. (2010). Bovine tuberculosis: a review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication. Transbound Emerg Dis. 57(4): 205-220.
  42. Shukla, S.K., Shukla, S., Chauhan, A., Sarvjeet., Khan, R., Ahuja, A., Singh, L.V., Sharma, N., Prakash, C., Singh, A.V., Panigrahi, M. (2017). Differential gene expression in Mycobacterium bovis challenged monocyte-derived macrophages of cattle. Microbial Pathogenesis. 113: 480-489.
  43. Song, Y., Sun, L., Guo, A., Yang, L. (2014). Toll-like receptor 6 gene polymorphisms increase the risk of bovine tuberculosis in Chinese Holstein cattle. Acta Histochemistry. 116(7): 1159-62.
  44. Sun, L., Song, Y., Riaz, H., Yang, H., Hua, G., Guo, A., Yang, L. (2012). Polymorphisms in toll-like receptor 1 and 9 genes and their association with tuberculosis susceptibility in Chinese Holstein cattle. Veterinary Immunology and Immunopathology. 147(3-4): 195-201.
  45. Tsairidou, S., Woolliams, J.A., Allen, A.R., Skuce, R.A., McBride, S.H., Wright, D.M., Bermingham, M.L., Pong-Wong, R., Matika, O., McDowell, S.W., Glass, E.J., Bishop, S.C. (2014). Genomic prediction for tuberculosis resistance in dairy cattle. PLoS ONE. 9 (5): e96728.
  46. Wakchaure, R.S., Gupta, I.D., Archana, V., Oinesh, K., Kumar, S.R., Sonawane, G.S. (2012). Association of toll-like receptor 4 (TLR4) gene exon 2 polymorphism with mastitis in Sahiwal cattle. Indian Journal of Animal Research. 46: 208-209.
  47. Wang, Y., Wang, S., Liu, T., Tu, W., Li, W., Dong, G., Xu, C., Qin, B., Liu, K., Yang, J., Chai, J., Shi, X., Zhang, Y. (2015). CARD15 gene polymorphisms are associated with tuberculosis susceptibility in Chinese Holstein cows, PLoS ONE. 10(8): e0135085.
  48. Werling, D., Jungi, T.W. (2003). TOLL-like receptors linking innate and adaptive immune response. Veterinary Immunology and Immunopathology. 91(1): 1-12.
  49. Wojdak-Maksymiec, K., Szyda, J., Strabel, T. (2013). Parity-dependent association between TNF-á and LTF gene polymorphisms and clinical mastitis in dairy cattle. BMC Veterinary Research. 9: 114.
  50. Xue, Y., Gao, W.N., Chen, F., Ma, B.B., Zhou, F., Hu, Z.G., Long, T., Zhao, Z.Q. (2018). CD14 gene polymorphisms associated with increased risk of bovine tuberculosis in Chinese Holstein cows, Veterinary Journal. 232: 1-5.
  51. Yadav, R., Sharma, A.K., Singh, R., Sonwane, A., Kumar, A., Chauhan, A., Kumar, S., Kumar, T., Renjith, R., Bhaladhare, A., Prakash, O. (2014). An association study of SNPs with susceptibility to Bovine Paratuberculosis infection in cattle. Indian Jouranl of Animal Science. 84(5):490-493.
  52. Zhao, Z., Xue, Y., Hu, Z., Zhou, F., Ma, B., Long, T., Xue, Q., Liu, H. (2017). Toll-like receptor 2 gene polymorphisms in Chinese Holstein cattle and their associations with bovine tuberculosis. Veterinary Immunology and Immunopathology. 186: 51-54. 

Editorial Board

View all (0)