Recombinant protein expression optimization in Escherichia coli: A review

DOI: 10.18805/ijar.B-3808    | Article Id: B-3808 | Page : 653-660
Citation :- Recombinant protein expression optimization in Escherichia coli: A review.Indian Journal Of Animal Research.2020.(54):653-660
N. Hemamalini, S. Ezhilmathi and A. Angela Mercy s.ezhilmathi.mfsc@gmail.com
Address : Department of Aquaculture, Dr. M.G.R Fisheries College and Research Institute, Thalainayeru, Nagapattinam-611 001, Tamil Nadu, India.
Submitted Date : 21-02-2019
Accepted Date : 10-04-2019

Abstract

Escherichia coli is the most extensively used organism in recombinant protein production. It has several advantages including a very short life cycle, ease of genetic manipulation and the well-known cell biology etc. which makes E. coli as the perfect host for recombinant protein expression. Despite many advantages, E. coli also have few disadvantages such as coupled transcription and translation and lack of eukaryotic post-translational modifications. These challenges can be overcome by adopting several strategies such as, using different E. coli expression vectors, changing the gene sequence without altering the functional domain, modified E. coli strain usage, changing the culture parameters and co-expression with a molecular chaperone. In this review, we present the level of strategies used to enhance the recombinant protein expression and its stability in E. coli.

Keywords

E. coli Fusion tags Heterologous protein Promoter Recombinant protein expression.

References

  1. Bass, S.H. and Yansura, D.G. (2000). Application of the E. coli trp promoter. Molecular biotechnology, 16(3):253-260.
  2. Brosius, J., Erfle, M. and Storella, J. (1985). Spacing of the-10 and-35 regions in the tac promoter. Effect on its in vivo activity. Journal of Biological Chemistry, 260(6): 3539-3541.
  3. Brown, B.L., Hadley, M. and Page, R. (2008). Heterologous high-level E. coli expression, purification and biophysical characterization of the spine-associated RapGAP (SPAR) PDZ domain. Protein Expression and Purification, 62(1): 9-14.
  4. Burgess-Brown, N.A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U. and Gileadi, O. (2008). Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expression and Purification, 59(1): 94-102.
  5. Butt, T.R., Edavettal, S.C., Hall, J.P. and Mattern, M.R. (2005). SUMO fusion technology for difficult-to-express proteins. Protein Expression and Purification, 43(1): 1-9.
  6. Calderone, T.L., Stevens, R.D. and Oas, T.G. (1996). High-level misincorporation of lysine for arginine at AGA Codons in a fusion protein expressed in Escherichia coli. Journal of molecular Biology, 262(4): 407-412.
  7. Carpousis, A.J. (2007). The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol., 61: 71-87.
  8. Chen, R. (2012). Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances, 30:1102.
  9. Chen, Y. and Leong, S.S.J. (2009). Adsorptive refolding of a highly disulfide-bonded inclusion body protein using anion-exchange chromatography. Journal of Chromatography A, 1216(24): 4877-4886.
  10. DeMarco, A. (2006). Two-step metal affinity purification of double-tagged (NusA–His 6) fusion proteins. Nature Protocols, 1(3):1538.
  11. DeMarco, A., Vigh, L., Diamant, S. and Goloubinoff, P. (2005). Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones, 10:329–339.
  12. DeMey, M., Maertens, J., Lequeux, G.J., Soetaert, W.K. and Vandamme, E.J. (2007). Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnology, 7(1): 34.
  13. Dumon-Seignovert, L., Cariot, G. and Vuillard, L. (2004). The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21 (DE3), C41 (DE3), and C43 (DE3). Protein Expression and Purification, 37(1): 203-206.
  14. Dyson, M.R., Shadbolt, S.P., Vincent, K.J., Perera, R.L. and McCafferty, J. (2004). Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnology, 4(1): 32.
  15. Elena, C., Ravasi, P., Castelli, M.E., Peiru, S. and Menzella, H.G. (2014). Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Frontiers in Microbiolology, 5.
  16. Esposito, D. and Chatterjee, D.K. (2006). Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 17(4): 353-358.
  17. Ferrer, M., Chernikova, T.N., Yakimov, M., Golyshin, P.N. and Timmis, K.N. (2003). Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnology, 21(11):1266.
  18. Ferrer, M., Lunsdorf, H., Chernikova, T.N., Yakimov, M., Timmis, K.N. and Golyshin, P.N. (2004). Functional consequences of single double ring transitions in chaperonins: life in the cold. Molecular Microbiology, 53(1):167-182.
  19. Francis, D.M. and Page, R. (2010). Strategies to optimize protein expression in E. coli. Current protocols in Protein Science, 61(1): 5-24.
  20. Gopal, G.J. and Kumar, A. (2013). Strategies for the production of recombinant protein in Escherichia coli. The protein journal, 32(6): 419-425.
  21. Gottesman, S. (1990). Minimizing proteolysis in Escherichia coli: genetic solutions. In Methods in enzymology, 185: 119-129.
  22. Gräslund, S., Nordlund, P., Weigelt, J., Hallberg, B.M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R. and Ming, J., (2008). Protein production and purification. Nature Methods, 5(2): 135.
  23. Grunberg-Manago, M. (1999). Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annual Review of Genetics, 33(1): 193-227.
  24. Harrison, R.G. (2000). Expression of soluble heterologous proteins via fusion with NusA protein. Innovations, 11:4-7.
  25. Hatfield, G.W. and Roth, D.A. (2007). Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering™. Biotechnology Annual Review, 13: 27-42.
  26. Hewitt, S.N., Choi, R., Kelley, A., Crowther, G.J., Napuli, A.J. and Voorhis, W.C.V. (2011). Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline. Acta Crystallographica F, 67(9): 1006–1009.
  27. Hu, J., Qin, H., Gao, F.P. and Cross, T.A. (2011). A systematic assessment of mature MBP in membrane protein production: overexpression,    membrane targeting and purification. Protein Expression and Purification, 80(1): 34-40.
  28. Jia, B and Jeon, C.O. (2016). High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biology, 6(8): 160-196.
  29. Johnston, K. and Marmorstein, R. (2003). Co-expression of proteins in E. coli using dual expression vectors. In E. coliGene Expression Protocols, 205-213.
  30. Joseph, B.C., Pichaimuthu, S., Srimeenakshi, S., Murthy, M., Selvakumar, K., Ganesan, M. and Manjunath, S.R. (2015). An overview of the parameters for recombinant protein expression in Escherichia coli. Journal of Cell Science & Therapy, 6(5): 1.
  31. Kataeva, I., Chang, J., Xu, H., Luan, C.H., Zhou, J., Uversky, V.N., Lin, D., Horanyi, P., Liu, Z.J., Ljungdahl, L.G. and Rose, J. (2005). Improving solubility of shewanella o neidensis MR-1 and clostridium thermocellum JW-20 proteins expressed into Esherichia coli. Journal of Proteome Research, 4(6): 1942-1951.
  32. Khlebnikov, A. and Keasling, J.D. (2002). Effect of lacY Expression on homogeneity of induction from the Ptac and Ptrc Promoters by natural and synthetic inducers. Biotechnology Progress, 18(3): 672-674.
  33. Lee, N., Francklyn, C. and Hamilton, E.P. (1987b). Arabinose-induced binding of AraC protein to araI2 activates the araBAD operon promoter. Proceedings of the National Academy of Sciences, 84(24): 8814-8818.
  34. Lefebvre, J., Boileau, G. and Manjunath, P. (2008). Recombinant expression and affinity purification of a novel epididymal human sperm-binding protein, BSPH1. Molecular Human Reproduction, 15(2): 105-114.
  35. Lobstein, J., Emrich, C.A., Jeans, C., Faulkner, M., Riggs, P., Berkmen, M. (2012). SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microbial cell factories. 8(11):56.
  36. Menzella, H.G. (2011). Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microbial cell factories, 10(1): 15.
  37. Milisavljeviæ, M.D., Papiæ, D.R., Timotijeviæ, G.S. and Maksimoviæ, V.R. (2009). Successful production of recombinant buckwheat cysteine-rich aspartic protease in Escherichia coli. Journal of the Serbian Chemical Society, 74(6): 607-618.
  38. Moffatt, B.A. and Studier, F.W. (1987). T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell, 49(2): 221-227
  39. Nallamsetty, S., Austin, B.P., Penrose, K.J. and Waugh, D.S. (2005). Gateway vectors for the production of combinatorially tagged His6 MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Science, 14(12): 2964-2971.
  40. Newbury, S.F., Smith, N.H., Robinson, E.C., Hiles, I.D. and Higgins, C.F. (1987). Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell, 48(2): 297-310.
  41. Peroutka, R.J., Orcutt, S.J., Strickler, J.E. and Butt, T.R. (2011). SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes: in Heterologous Gene Expression in E. coli, Methods in Molecular Biology, 705: 15–30.
  42. Piserchio, A., Ghose, R. and Cowburn, D. (2009). Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies. Journal of Biomolecular NMR, 44(2): 87-93.
  43. Prinz, W.A., Åslund, F., Holmgren, A. and Beckwith, J. (1997). The Role of the Thioredoxin and Glutaredoxin Pathways in Reducing Protein Disulfide Bonds in the Escherichia coliCytoplasm. Journal of Biological Chemistry, 272(25): 15661-15667.
  44. Qing, G., Ma, L.C., Khorchid, A., Swapna, G.V.T., Mal, T.K., Takayama, M.M., Xia, B., Phadtare, S., Ke, H., Acton, T. and Montelione, G.T. (2004). Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnology, 22(7): 877.
  45. Richardson, J.P. and Roberts, J.W. (1993). Transcription termination. Critical Reviews in Biochemistry and Molecular Biology, 28(1): 1-30.
  46. Rosano, G.L. and Ceccarelli, E.A. (2009). Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microbial Cell Factories, 24(8): 41.
  47. Routzahn, K.M. and Waugh, D.S. (2002). Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. Journal of Structural and Functional Genomics, 2(2): 83-92.
  48. Sahdev, S., Khattar, S.K. and Saini, K.S. (2008). Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Molecular and cellular biochemistry, 307(1-2): 249-264.
  49. Saida, F., Uzan, M., Odaert, B. and Bontems, F. (2006). Expression of highly toxic genes in E. coli: special strategies and genetic tools. Current Protein and Peptide Science, 7(1): 47-56.
  50. San-Miguel, T., Pérez-Bermúdez, P. and Gavidia, I. (2013). Production of soluble eukaryotic recombinant proteins in E. coli is favoured in early log-phase cultures induced at low temperature. Springerplus, 2(1): 89.
  51. Schlegel, S., Löfblom, J., Lee, C., Hjelm, A., Klepsch, M., Strous, M., Drew, D., Slotboom, D.J. and de Gier, J.W. (2012). Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21 (DE3). Journal of Molecular Biology, 423(4): 648-659.
  52. Smith, D.B. and Johnson, K.S. (1988). Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 67(1): 31-40.
  53. Snajder, M., Mihelic, M., Turk, D. and Ulrih, N.P. (2015). Codon optimisation is key for Pernisine expression in Escherichia coli. PLoS ONE, 10(4): e0123288.
  54. Sonoda, H., Kumada, Y., Katsuda, T. and Yamaji, H.J. (2011). Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli. Journal of Bioscience and Bioengineering. 111(4):465-470.
  55. Studier, F.W. (1991). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. Journal of Molecular Biology, 219(1): 37-44.
  56. Studier, F.W. and Moffatt, B.A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology, 189(1): 113-130.
  57. Tohru, N., Takeshi, I. and Tsutomu, N., (1994). A T7 promoter vector with a transcriptional terminator for stringent expression of foreign genes. Gene, 145(1): 145-146.
  58. Turner, P., Holst, O. and Karlsson, E.N. (2005). Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expression and Purification, 39(1): 54-60.
  59. Vincentelli, R., Bignon, C., Gruez, A., Canaan, S., Sulzenbacher, G., Tegoni, M. and Cambillau, C. (2003). Medium-scale structural genomics: strategies for protein expression and crystallization. Accounts of Chemical Research, 36(3), 165–172.
  60. Volontè, F., Marinelli, F., Gastaldo, L., Sacchi, S., Pilone, M.S., Pollegioni, L. and Molla, G. (2008). Optimization of glutaryl-7-    aminocephalosporanic acid acylase expression in E. coli. Protein Expression and Purification, 61(2): 131-137.
  61. Welch, M., Govindarajan, S., Ness, J.E., Villalobos, A., Gurney, A., Minshull, J. and Gustafsson, C. (2009). Design parameters to control synthetic gene expression in Escherichia coli. PloS One, 4(9): 7002.
  62. Yang, M.T., Scott, H.B. and Gardner, J.F. (1995). Transcription termination at the thr attenuator Evidence that the adenine residues upstream of the stem and loop structure are not required for termination. Journal of Biological Chemistry, 270(40): 23330-    23336.
  63. Yao, J., Patrone, J.D. and Dotson, G.D. (2009). Characterization and kinetics of phosphopantothenoylcysteine synthetase from Enterococcus faecalis. Biochemistry, 48(12): 2799-2806.
  64. Yin, J., Li, G., Ren, X. and Herrler, G. (2007). Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology, 127(3): 335-347.
  65. Zhang, Y.B., Howitt, J., McCorkle, S., Lawrence, P., Springer, K. and Freimuth, P. (2004). Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expression and Purification, 36(2): 207-216.
  66. Zhao, X., Li, G. and Liang, S. (2013). Several Affinity Tags Commonly Used in Chromatographic Purification. Journal of Analytical Methods in Chemistry, 2013. 

Global Footprints