Effect of salinity on survival, hematological and histological changes in genetically improved rohu (Jayanti), Labeo rohita (Hamilton, 1822)

DOI: 10.18805/ijar.B-3801    | Article Id: B-3801 | Page : 673-678
Citation :- Effect of salinity on survival, hematological and histological changes in genetically improved rohu (Jayanti), Labeo rohita (Hamilton, 1822).Indian Journal Of Animal Research.2020.(54):673-678
K. Murmu, K.D. Rasal, A. Rasal, L. Sahoo, P.C. Nandanpawar, U.K. Udit, M. Patnaik, K.D. Mahapatra and J.K. Sundaray avinashrasal44@gmail.com
Address : Fish Genetics and Biotechnology Division,
ICAR- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha.
Submitted Date : 11-02-2019
Accepted Date : 3-04-2019

Abstract

The recent climate change and anthropogenic activity affects the agricultural land/soil as well as aquaculture sector via salinization of the aquatic zone. The present study aimed to investigate the effect of salinity on genetically improved farmed rohu, Labeo rohita popularly known as Jayanti and evaluation of its physiological response towards combating salinity stress. Genetically improved rohu (Jayanti) fingerlings were reared in laboratory condition at different salinities 2, 4, 6, 8 and 10 ppt to assess the effect of salinity on survival for the first time in India. The study revealed that the Jayanti rohu fingerlings could tolerate salinity upto 8 ppt range. The survival rate of the fingerlings varied from 100%, 95%, 80% and 75% at 2, 4, 6 and 8 ppt salinities, respectively and 100% mortality occurred at 10 ppt. The survival rate was significantly higher in lower salinities than other acclimation salinities. The hematological parameters analysis depicted that blood parameters were affected by increase in salinity beyond 6 ppt. The histological analysis reported mild lesions on gills of fishes exposed to higher salinities at 8 ppt. The present study revealed that exposure to salinity moderately affects the survival and physiological response of genetically improved rohu and thus the potential of the improved rohu “Jayanti” to tolerate salinity levels upto 8 ppt.  These results suggest that there is great prospective for culturing selectively bred rohu (Jayanti) species in low saline areas or salt affected areas with good survivability and open new avenues for further research and development.

Keywords

Hematology Histology Jayanti Rohu Salinity Survival rate.

References

  1. Altinok, I., Galli, S.M., Chapman, F.A. (1998). Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenseroxyrinchusdesotoi.CompBiochemPhysiol A,120: 609–616.
  2. American Public Health Association (APHA) (1988). Standard Methods for the Examination of Water and Wastewater.17th Ed. Washington DC: American Water Works Association, Water Pollution Control federation.
  3. Ayson, F.G., Kaneko, T., Hasegawa, S., Hirano, T. (1995). Cortisol stimulates the size and number of mitochondrion-rich cells in the yolk-sac membrane of embryos and larvae of Tilapia (Oreochromismossambicus) in vitro and in vivo. J. Exp. Zool., 272: 419-425.
  4. Baliarsingh, M.M., Panigrahi, J.K., Patra, A.K. (2018). Effect of salinity on growth and survivality of Labeorohita in captivity. International Journal of Scientific Research, 7: 28-30.
  5. Barman, H.K., Patra, S.K., Das, V., Mohapatra, S.D., Jayasankar, P., Mohapatra, C., Mohanta, R., Panda, R.P., Rath, S.N. (2012). Identification and characterization of differentially expressed transcripts in the gills of freshwater prawn (Macrobrachiumrosenbergii) under salt stress.Sci. World J., p. 149361.
  6. Chakrapani, V., Rasal, K.D., Mohapatra, S.D., Rasal, A.R., Jayasankar, P., Barman, H.K. (2017).Molecular characterization, computational analysis and transcript profiling of glutamate dehydrogenase (gdh) gene of Macrobrachiumrosenbergii exposed to saline water. Gene Reports, 8: 37-44. 
  7. Dagar, J.C. (2005). Salinity Research in India: An Overview. Bulletin of the National Institute of Ecology15: 69-80.
  8. Das Mahapatra, K., Jayasankar, P., Saha, J.N., Murmu, K., Rasal, A.R., Nandanpawar, P., Patnaik, M., Sundaray, J.K., Sahoo, P.K. (2016).JayantiRohu: Glimpses from the Journey of First Genetically Improved Fish in India, 1st edn. ICAR-CIFA, Bhubaneswar.
  9. Denson, M.R., Stuart, K.R., Smith, TIJ., Weirlch, C.R., Segars, A. (2003). Effects of salinity on growth, survival, and selected hematological parameters of juvenile Cobia Rachycentron canadum. Journal of the World Aquaculture Society, 34: 496-504.
  10. Eddy, F. B. 2006. Cardiac function in juvenile salmon (SalmoSalar L.) in response to lipopolyscharide (LPS) and inhibitor of Inducible Nitric Oxide Synthase (IONS). Fish Physiol. Biochem, 31: 339-346.
  11. Elarabany, N., Bahnasawy, M., Edrees, G., Alkazagli, R. (2017). Effects of Salinity on Some Haematological and Biochemical Parameters in Nile Tilapia, Oreochromusniloticus. Agriculture, Forestry and Fisheries, 6(6): 200-205.FAO (2012). 
  12. FAO. 2009. Food Security and Agricultural Mitigation in Developing Countries: Options for Capturing Synergies. Rome, Italy. www.fao.org/docrep/012/i1318e/i1318e00.pdf.
  13. Fiúza, L.S., Aragão, N.M., Junior, R., Pinto, H., Moraes, M.G., Rocha, ÍRCB, et. al., . (2015).Effects of salinity on the growth, survival, haematological parameters and osmoregulation of tambaquiColossomamacropomum juveniles.Aquaculture Research, 46:1-9.
  14. Gabriel, U.U. and Akinrotimi, O.A. (2011).Management of Stress in Fish for Sustainable Aquaculture Development, Researcher, 3(4).
  15. Ghosh, A.N., Ghosh, S.R. and Sarkar, N.N. (1973).On the salinity tolerance of fry and fingerlings of Indian major carps.J. Inland Fish. Soc. India, 5: 215-217.
  16. Gjedrem, T., (2012). Genetic improvement for the development of efficient global aquaculture: a personal opinion review. Aquaculture 344–349: 12–22.
  17. Harper, C., Wolf, J.C. (2009).Morphologic effects of the stress response in fish. ILAR Journal, 50: 387-396.
  18. Husen, M.A., Sharma S. (2014). Efficacy of anesthetics for reducing stress in fish during aquaculture practices- a review. KUSET; 10(I):104-123.
  19. IAB. 2000. Indian Agriculture in Brief. (27th edition).Agriculture Statistics Division, Ministry of Agriculture, Govt. of India, New Delhi.
  20. Imanpoor, M.R., Najafi, E., Kabir, M. (2012).Effects of different salinity and temperatures on the growth, survival, haematocrit and blood biochemistry of Goldfish (Carassiusauratus).AquacultureResearch, 43: 332–338.
  21. Iwama, G.K.; Afonso, L.O.B., Vijayan, M.M. (2006). Stress in fishes. In: The Physiology of Fishes. 3a ed. [Evans, D.H.; Claiborne, J.B. (Eds)]CRC, New York, p. 319-342.
  22. Janssen, K., Chavanne, H., Berentsen, P., Komen, H. (2017). Impact of selective breeding on European aquaculture. Aquaculture, 472: 8–16.
  23. Küçük, S., Karul, A., Yildirim, S., Gamsiz, K. (2013).Effects of salinity on growth and metabolism in blue tilapia (Oreochromisaureus).
  24. African Journal of Biotechnology, 12: 2715-2721.
  25. Kultz, D. (2015). Physiological mechanisms used by ûsh to cope with salinity stress. Journal of Experimental Biology, 218:1907–1914.
  26. Larcher, W. (1995). Physiological Plant Ecology (third ed.), Springer, Berlin.
  27. Luz, R.K., Martinez-Alvarez, R.M., DePedro, N., Delgado, M.J. (2008). Growth, food intake regulation and metabolic adaptations in goldfish (Carassius auratus) exposed to different salinities. Aquaculture, 276: 171-178.
  28. Madsen, S. S. and Bern, H. A. (1993). In-vitro effects of insulin-like growth factor-I on gill Na+,K+-ATPase in coho salmon, Oncorhynchuskisutch. J. Endocr. 138: 23–30.
  29. Martínez – Porchas, M., Martínez – Cordóva, L. R. and Ramos – Enriquez, R. (2009). Cortisol and Glucose: Reliable indicators of fish stress? Pan-American Journal of Aquatic Sciences, 4: 158-178.
  30. Mohammadi, M., Sarsangi, H., Askari, M., Bitaraf, A., Mashaii, N., Rajabipour, F., Alizadeh, M. (2011).Use of underground brackish water for reproduction and larviculture of Rainbow Trout, Oncorhynchusmykiss. Journal of Applied Aquaculture, 23: 103–111.
  31. Mohapatra, S., Chakraborty, T., Kumar, V., DeBoeck, G and Mohanta, K.N. (2013). Aquaculture and stress management: a review of probiotic intervention, Journal of Animal Physiology and Animal Nutrition. 97: 405–430.
  32. Murayama, T., Nishihara, A T., Ishizaki, H. and Oyama, S. (1977). High density rearing of pejerrey O. bonariensis in brackishwater. Rep. Kanagawa Pref. Freshwat. Fish Prop. Exper.Station,13:22- 26.
  33. Neumann, P. (1997). Salinity resistance and plant growth revisited. Plant, Cell and Environment,20:1193-1198. 
  34. Overton, J.L., Bayley, M., Paulsen, H., Wang, T. (2008). Salinity tolerance of cultured Eurasian perch, PercafluviatilisL.: Effects on growth and survival as a function of temperature. Aquaculture 277: 282-286.
  35. Portz, D. E., Woodley, C. M. and Cech, J. J., Jr (2006).Stress-associated impacts of short-term holding on fishes.Rev. Fish Biol. Fish.16: 125–170. DOI 10.1007/s 11160-006-9012-z.
  36. Rasal, A.R., Patnaik, M., Murmu, K., Nandanpawar, P., Sundaray, JK.,Mahapatra, KD. (2017). Genetically improved JayantiRohu: A boon to freshwater aquaculture in India. World Aquaculture,48: 23-25.
  37. Rengasamy P. (2006). World salinization with emphasis on Australia.J. Exp. Bot, 57: 1017–1023.
  38. Roache, MC., Bailey, PC. and Boon, PI. (2006). Effects of salinity on the decay of the freshwater macrophyte, Triglochinprocerum.Aquatic Botany, 84: 45-52. 
  39. Robertson, L., Thomas, P., Arnold, C.R. and Trant, J.M., (1987). Plasma cortisol and secondary stress responses of red drum (Sciaenopsocellatus) to handling, transport, rearing density and an outbreak of disease.Prog. Fish-Cult., 49: 1-12.
  40. Robinson, N., Baranski M., Das Mahapatra K., Saha JN., Das S., Mishra J., Das P., Kent M., Arnyasi M. and Sahoo PK. (2014). A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeorohita) and QTL associated with resistance to Aeromonashydrophila. BMC Genomics, 15:541.
  41. Small, B. C. and Bilodeau, A. L. (2005). Effects of cortisol and stress on channel catfish (Ictaluruspunctatus) pathogen susceptibility and lysozyme activity following exposure to Edwardsiellaictaluri, General and Comparative Endocrinology, 142: 256– 262.
  42. Sobhana, KS. (2009). Diseases of Seabass in Cage Culture and Control Measures. National Fisheries Development Board, pp. 87-93.
  43. Strüssmann, CA., Moriyama, S., Hanke, E. F., CalsinaCota, JC and Takashima, F. (1996). Evidence of thermolabile sex determination in pejerrey.J Fish Biol.,48:643-651.
  44. Suzuki, M.S., Figueiredo, R.O., Castro, S.C., Silva, C.F., Pereira, E.A., Silva, J.A. and Aragon, G.T. (2002). Sand bar opening in a coastal lagoon (Iquipari) in the northern region of Rio de Janeiro state: hydrological and hydrochemical changes. Brazil Journal of Biology,62: 51-62. 
  45. Suzuki, MS., Ovalle, ARC. and Pereira, EA. (1998). Effects of sand bar openings on some immunological variables in a hypertrophic tropical coastal lagoon. Hydrobiologia, 368: 111-122.
  46. Tsuzuki, M.Y., Aikawa, H., Strüssmann, C.A., Takashima, F. (2000). Physiological responses to salinity increases in the freshwater silversides Odontesth esbonariensis and O. hatcheri (Pisces, Atherinidae). Rev. Bras. Oceanogr.,48: 81-85.
  47. Umezawa, K. and Nomura, H. (1984).Transportation of pejerreyOdontesthesbonariensis.Rep. Saitama Pref. Freshwat. Fish Prop. Exper. Station, 43:82- 86.
  48. Verdegem, M.C.J., Hilbrands, A.D. and Boon, H. (1997). Influence of salinity and dietary composition on blood parameter values of hybrid red Tilapia, Oreochromisniloticus (Linnaeus) × O. mossambicus (Peters). Aqua. Res.,28: 453-459.
  49. Walters, G.R., Plumb, J.A. (1980). Environmental stress and bacterial infection in channel catfish, Ictaluruspunctatus Rafinesque.Journal of Fish Biology,17:177­-185. 
  50. Wang, J., Lui, H., Po, H., Fan, L. (1997). Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinus carpio) fingerlings. Aquaculture,148: 115-124.
  51. Weissgerber, T. L., Garcia-Valencia, O., Garovic, V. D., Milic, N. M., & Winham, S. J. (2018). Why we need to report more than ‘Data were Analyzed by t-tests or ANOVA’. eLife, 7, e36163.
  52. Williams, WD. (1999). Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes and Reservoirs: Research and Management,4: 85-91. 

Global Footprints