Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 53 issue 8 (august 2019) : 1006-1013

Effect of administration of methanol root bark extract of Cussonia arborea on serum lipid profile and oxidative biomarker parameters in alloxan-induced diabetic rats

Patrick Emeka Aba, Isaac Uzoma Asuzu
1Department of  Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria.
Cite article:- Aba Emeka Patrick, Asuzu Uzoma Isaac (2016). Effect of administration of methanol root bark extract of Cussonia arborea on serum lipid profile and oxidative biomarker parameters in alloxan-induced diabetic rats. Indian Journal of Animal Research. 53(8): 1006-1013. doi: 10.18805/ijar.9555.
This study investigated the effects of methanol extract of Cussonia arborea on serum lipid and oxidative stress biomarkers of alloxan-induced diabetic rats. A total of 72 male albino rats assigned into 6 groups of 12 rats per group were used. Groups 1-5 were made diabetic while group 6 were normal. Groups 1-4 were treated with 62.5, 125, 250 mg/kg of the extract and 2 mg/kg glibenclamide respectively while groups 5 and 6 received 10 ml/kg distilled water each. Total cholesterol, triglyceride, high density lipoprotein (HDL), malondiadehyde, catalase and superoxide dismutase (SOD) were assayed on days 28, 56 and 84 post treatment. The results indicated that the extract significantly (p<0.05) reduced the levels of total cholesterol, triglyceride, malondialdehyde but significantly (p<0.05) increased the activities of SOD, catalase and the levels of HDL when compared to negative control. It was therefore concluded that methanol extract of C. arborea mitigated dyslipidaemia and oxidative stress.
  1. Amadou, M.D., Anna S.N, DioP, M.N., Guata, Y.M., Diarral, H.R., Gaffary, A.N., Babacar, F. (2008). Screening of plants for antidiabetic properties. Fund. Clin. Pharmacol. 22: 211-216.
  2. Anit, L., Suvarna, P., Neeru, B., Jasbir, S. and Rajesh. P. (2013). Malondialdehyde (MDA): an oxidative stress marker in type II diabetes mellitus with and without complication. Curr. Trends in Biotech. Chem. Res. article/view/54.
  3. Benzie, F.F. and Strain, J.J. (1999). Ferric reducing/Antioxidant power Assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymol. 299: 15-23. 
  4. Beutler, E., Duron, O. and Kelly, B.M. (1963). Improved method for determination of blood glutathione. J Lab. Clin. Med. 61: 882-888.
  5. Blois, M.S. (1958). Antioxidants determination by the use of a stable free radical. Nature. 181: 1199-1200.
  6. Chelikani, P., Fita, I. and Loewen, P.C. (2004). Diversity of structures and properties among catalases. Cell mol. Life sci. 61:192-208.
  7. De villiers, B.J., Vuuren, S.F., Van zyl, RL. and Van wyk, B.E. (2010). Antimicrobial and antimalaria activity of Cussonia arborea. J. Ethnopharmacol. 7:323-8.
  8. Dewanjee, S., Bose, S.K., Sahu, R. and Mandal, S.C. (2008). Antidiabet..ic effect of matured fruits of Diospyros peregrine in alloxan induced diabetic rats. Intern. J. Green Pharm. 2:95-99. 
  9. Friedwald, W.T., Levy, R.L. and Fredickson, D.S. (1972). Estimation of low density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-502.
  10. Goldberg, I.J. (2001). Diabetic Dyslipidemia: Statins versus Fibrates in the Treatment of Diabetic Dyslipidemia. Symposium. Program and abstracts of the 61st Scientific Sessions of the American Diabetes Association; June 22-26, Philadelphia, Pennsylvania.
  11. Guo, C., Yang, J., Wei, J., Li, Y., Xu J. and Jiang, Y. (2003). Antioxidant activities of peel, pulp, and seed fractions as determined by FRAP assay. Nutr. Res. 23: 1719-1726.
  12. Jain, N., Vijayaraghavan, R., Pant, S.C., Lomash, V. and Ali, M. (2010). Aloe vera gel alleviates cardiotoxicity in streptozocin-    induced diabetes in rats. J Pharm Pharmacol. 62: 115-123.
  13. Kahn, C.M. (2005). Diabetes Mellitus in Kahn CM (ed) “Merk veterinary Manual, 9th edition, Merck and Co, Inc. White House Station, NJ U.S.A 439-1013.
  14. Kakkar, S.B. and Viswanathan, P. (1989). A modified spectrophotometric assay of superoxide dismutase, Indian J. Biochem.Biophysics, 21: 130-132.
  15. Ke, C., Xiaoling, L., Keyi, X. and Ven Murthy, M.R. (2004). Progress in neuropsychopharmalogy and biological psychiatry. Neur. Sci 28: 771-799. 
  16. Kinsangau, D.P., Hosea, K.M., Herbert, V.M., Cosam, C.J., Zakaria, H.M., Pax, J.M., Catherine, B.G., Lenta, N.B., Krishna, P.D and Nobert, S. (2007). Plant species used in treating various HIV/AIDS-related conditions in Bukoba rural district. J. Ethnobiol. Ethnomed. 3: 29.
  17. Kumar, R.V and Augusti, K.T. (1989). Antidiabetic effect of a leucocyanidin derivative isolated from the bark of Ficus bengalensis Linn. Indian J Biochem Biophys. 26: 400-404.
  18. Mensor, F., Luciana, L., Fabia, S., Menezes, G., Leitao, A.S., Reis, T.C., Dos-santos, S., Coube, S and Leitao, G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 15:127-130. 
  19. Mohammed, F., Ghafar, K., Nagendra, P., Kong, K.W and Amin, I. (2009). Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. Afri. J Biotech. 9: 326-330.
  20. Ozougwu, J.C., Obimba, K.C., Belonwu, C and Unakalama, C.B. (2013). The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 4:46-57.
  21. Panda, S. and Kar, A. (2007). Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated throughquercetin-3-O-glucoside. Biofactors. 31:201-210.
  22. Rizvi, S.I and Zaid, M.A. (2001). Intracellular reduced glutathione content in normal and type 2 Diabetic Erythrocytes: Effects of insulin and (-) epicatechin. J. physiol. Pharmacol. 52: 483-488.
  23. Rodrigues, B., Cam, M.C. and McNeil, J.H. (1998). Metabolic disturbance in diabetic cardiomyopathy. Mol. Cell Biochem. 180: 53-57.
  24. Sinha, A.K. (1972). Colorimetric assay of catalase. Anal Biochm. 47:389-394.
  25. Tennant, J.R. (2010). Cussonia arborea Hochst ex. A. Rich . Flora Trop. East Afri. 10: 621.
  26. Twari, A.K and Rao, J.M. (2002). Diabetes Mellitus and Multiple therapeutic approaches of phytochemicals. Present status and future prospect. Carr. Sci. 83: 30-38.
  27. Venogopal, P.M., Prince, P.S.M and Pari, L. (1998). Hypoglycemic activities of Syzigium cumini seeds effect on lipid peroxidation in alloxan diabetic rats. J. Ethnopharmacol. 61:1-7. 
  28. Wallin, B., Rosengren, B., Shertyer, H.G and Camejo, G. (1993). Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microfilter plate; its use for evaluation of antioxidants. Anal Biochm. 288:10-15.
  29. Zimmet, P.Z. (1999). Diabetes epidemiology as a tale to trigger diabetes research and care. Diabetologia. 42:499-518.

Editorial Board

View all (0)