Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 54 issue 1 (january 2020) : 11-15

Effect of additives in medium on in-vitro maturation of goat oocytes

D. Borah, R.K. Biswas
1Department of Animal Reproduction, Gynaecology and Obstetrics College of Veterinary Science, Assam Agricultural University, Khanapara-781 022, Assam, India.
Cite article:- Borah D., Biswas R.K. (2019). Effect of additives in medium on in-vitro maturation of goat oocytes. Indian Journal of Animal Research. 54(1): 11-15. doi: 10.18805/ijar.B-3722.
Present study was carried out to find the effect of combining EGF with IGF, cysteine and sodium pyruvate singly as additive in a medium consisting of TCM-199 + 100 µl/ml foetal bovine serum + 100 µM/ml cysteamine + 1 µg/ml 17â- Oestradiol + 5 µg/ml pFSH + 5µg/ml oLH + 10 per cent follicular fluid and 10 per cent oestrous goat serum on in-vitro maturation (IVM) of caprine oocytes on incubation at 38.50C for 24 hours in a CO2 incubator maintaining 5 per cent CO2 under humidified condition. The additives comprised 10 ng/ml EGF + 50 ng/ml IGF-1, 10 ng/ml EGF + 600 µM/ml cysteine and 10 ng/ ml EGF + 0.2 mM/ml sodium pyruvate. The IVM rate of oocytes on the basis of cumulus cells expansion and nuclear maturation was found to be significantly higher (P<0.05) with EGF + IGF-1 (88.74 ± 1.85% and 61.71 ± 1.61%) than with EGF + sodium pyruvate (82.86 ± 0.97% and 54.62 ± 1.88%), EGF + cysteine ( 78.58 ± 1.45% and 49.02 ± 1.52%) and without additive (control) (75.27 ± 1.58% and 43.03 ± 1.48%).
  1. Abeydeera, L. R.; Wang, W.H.; Cantley, T.C.; Rieke, A.; Murphy, C.N.; Prather, R.S. and Day, B.N. (2000). Development and viability of pig oocytes matured in a protein-free medium containing epidermal growth factor. Theriogenology, 54: 787- 797.
  2. Bai, J.; Hou, J.; Guan, H.; Yan, F.; Cui, X.; Liu, L.; Wang, S. and An, X. (2008). Effect of 2- mercaptoethanol and cysteine supplementation during in-vitro maturation on the developmental competence of oocytes from hormone- stimulated lambs. Theriogenology, 70: 758-764.
  3. Banwell, K.M. and Thompson, J.G. (2008). In-vitro maturation of mammalian oocytes: Outcomes and consequences. Semin Reprod Med, 26(2): 162-174.
  4. Bridges, T.S.; Davidson, T.R.; Chamberlain, C.S.; Geisert, R.D. and Spicer, C.J. (2002). Changes in follicular fluid steroids, insulin-like growth factors IGF and IGF-binding protein concentration, and proteolytic activity during equine follicular development. J. Anim. Sci., 80: 179–190.
  5. Brucker, C.; Alexander, N.J.; Hodgen, G.D. and Sandow, B.A. (1991). Transforming growth factor-alpha augments meiotic maturation of cumulus cell-enclosed mouse oocytes. Mol Reprod Dev, 28: 94-98.
  6. Carpenter, G. and Cohen, S. (1990). Epidermal growth factor. J Biol Chem., 265: 7709- 7712.
  7. Chance, B.; Sies, H. and Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiological Reviews, 59: 527–605.
  8. Coskun S. and Lin Y.C. (1992). Site of action of epidermal growth factor (EGF) on in vitro porcine oocyte maturation in chemically defined medium. Biol Reprod., 46(suppl 1): 138 (abstract 350).
  9. Coskun, S.; Sanbuissho, A.; Lin, YC. and Rikihisa, Y. (1991). Fertilizability and subsequent developmental ability of bovine oocytes matured in medium containing epidermal growth factor (EGF). Theriogenology, 36: 485-494.
  10. de Matos, D.G.; Gasparrini, B.; Pasqualini, S.R. and Thomson, J.G. ( 2002). Effect of glutathione synthesis stimulation during in-vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology, 57(5): 1443–1451.
  11. Dekel, N. and Sherizly, I. (1985). Epidermal growth factor induces maturation of rat follicle enclosed oocytes. Endocrinology, 116: 512-516.
  12. Downs, S. M.; Dow, M. P. D. and Fagbohun, C. F. (1991). The meiotic response of cumulus cell-enclosed mouse oocyte to follicle stimulating hormone in the presence of different macromolecules. J Exp Zool, 258: 373-383.
  13. Druker, B.J.; Mamon, H.J. and Roberts, T.M. (1989). Oncogenes, growth factors and signal transduction. N Engl J Med., 321: 1383-1391.
  14. Eng, L.A.; Kornegay, E.T.; Huntington, J. and Wellman, T. (1986). Effects of incubation temperature and bicarbonate on maturation of pig oocytes in-vitro. J Reprod Fertil., 76: 657–662.
  15. Gall, L.; Boulesteix, C.; Ruffini, D. and Germain, G. (2005). EGF-induced EGF receptor and MAP kinase phosphorylation in goat cumulus cells during in-vitro maturation. Mol. Reprod. Dev., 71: 489-494.
  16. Gall, L.; Chene, N.; Dahirel, M.; Ruffini, D. and Boulesteix, C. (2004). Expression of epidermal growth factor receptor in the goat cumulus-oocyte complex. Mol. Reprod. Dev., 67: 439-445.
  17. Goud, P. T.; Goud, A. P.; Quian, C.; Laverge, H.; Van Der Elst, J. and De Sutter, P. (1998). In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Human Reproduction, 13: 1638–44.
  18. Guler, A.; Poulin, N.; Mermillod, P.; Terqui, M. and Cognie, Y. (2000). Effect of growth factors, EGF and IGF-I, and Estradiol on in-vitro maturation of sheep oocytes. Theriogenology, 54 : 209-218.
  19. Harper, K. M. and Brackett, B.G. (1991). Effect of gonadotropins with epidermal growth factor (EGF) during maturation on embryo viability in-vitro. Biol Reprod., 44(suppl 1): 85 (abstract 132).
  20. Harper, K.M. and Brackett, B.G. (1993). Bovine blastocyst development after in-vitro maturation in a defined medium with epidermal growth factor and low concentrations of gonadotropins. Biology of Reproduction, 48: 409-416.
  21. Herrler, A.; Lucas Hann, A. and Niemann, A. (1992). Effects of insulin like growth factors-1 on in-vitro production of bovine embryos. Theriogenology, 37: 1213–1224.
  22. Isobe, N. and Terada, T. (2001). Effect of the factor inhibiting germinal vesicle breakdown on the disruption of gap junctions and cumulus expansion of pig cumulus-oocyte complexes cultured in-vitro. Reproduction, 121: 249–257.
  23. Izadyar, F.; Hege, W.G.; Colenbrander, B. and Bevers, M.M. (1998). The promontory effects of growth hormone on the developmental competence of in-vitro matured bovine oocytes is due to improved cytoplasmic maturation. Mol. Reprod. Develop., 49: 444-453.
  24. Jones, J. K. I. and Clemmons, D. R. (1995). Insulin-like growth factors and their binding proteins: biological action. Endocrinol. Rev., 16: 3–34.
  25. Kobayashi, K.; Yamashita, S. and Hoshi, H. (1994). Influence of epidermal growth factor and transforming growth factor á on in-vitro maturation of cumulus cell enclosed bovine oocytes in a defined medium. J Reprod Fertil., 100: 439-446.
  26. Leese, H. J. and Barton, A. M. (1985). Production of pyruvate by isolated mouse cumulus cells. Journal of Experimental Zoology, 234: 231-236.
  27. Lonergan, P.; Carolon, C.; Langendonckt, A.V.; Donway, I.; Khatri, H. and Mermillod, P. (1996). Role of epidermal growth factor in bovine oocyte maturation and pre-implentation embryo development in-vitro. Biol. Reprod., 54: 1420-1429.
  28. Lorenzo, P.L.; Illera, M.J.; Illera, J.L. and Illera, M. (1995). Chronological changes in the meiotic progress of in-vitro maturation of bovine oocytes. Anatomia Histologia Embryologia, 24(2): 139-144 (c.f. Anim. Breed. Abstr., 63: 5624).
  29. Lorenzo, P.L.; Illera, M.J.; Illera, J.C. and Illera, M. (1993). Specific actions of growth factors EGF and IGF-1 on the in-vitro maturation of bovine oocytes. Rev. Esp. Fisiol., 49 (4): 265–270.
  30. Lorenzo, P.L.; Illera, M.J.; Illera, J.C. and Illera, M. (1994). Enhancement of cumulus expansion and nuclear maturation during bovine oocyte maturation in-vitro by the addition of epidermal growth factors and insulin-like growth factor. J. Reprod. Fertil., 101: 697-701.
  31. Meister, A. (1983). Selective modification of glutathione metabolism. Science, 220: 472-477.
  32. Meister, A. and Tate, S. S. (1976). Glutathione and the related y-glutamyl compounds: biosynthesis and utilization. Annual Review of Biochemistry, 45: 559–604.
  33. Nagar, D. and Purohit, G.N. (2005). Effect of epidermal growth factor on maturation and fertilization in-vitro of goat follicular oocytes in a serum free or serum supplemented medium. Vet. Arhiv., 75(6): 459-467.
  34. Nandi, S.; Ravindranatha, B.M.; Gupta, P.S.P. and Sarma, P.V. (2002). Timing of sequential changes in cumulus cells and first polar body extrusion during in-vitro maturation of buffalo oocytes. Theriogenology, 57: 1151-1159.
  35. Palma, G.A.; Muller, M. and Brem, G. (1997). Effect of insulin-like growth factor 1 IGF-1 at high concentrations on blastocyst development of bovine embryos produced in-vitro. J. Reprod. Fertil., 110: 347–353.
  36. Parrish, J.J.; Susko-Parrish, J.L.; Leibfried-Rutledge, M.L.; Critser, E.S.; Eyestone, W.H. and First, N.L. (1986). Bovine in-vitro fertilization with frozen-thawed sperm. Theriogenology, 25: 591- 600.
  37. Rieger, D. and Loskutoff, N.M.(1994). Changes in metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocytes in-vitro. J. Rrprod. Fertil., 100: 257-262.
  38. Roy, S.K. and Greenwald, G.S. (1990). Immunohistochemical localization of epidermal growth factor-like activity in the hamster ovary with a polyclonal antibody. Endocrinology, 126: 1309-1317.
  39. Roy, S.K. and Greenwald, G.S. (1991). Mediation of follicle-stimulating hormone action on follicular deoxyribonucleic acid synthesis by epidermal growth factor. Endocrinology, 129: 1903-1908.
  40. Rozengurt, E. (1983). Growth factors, cell proliferation and cancer: an overview. Mol Biol Med., 1: 169-181.
  41. Sagara, J.; Miura, K. and Bannai, S. (1993). Cystine uptake and glutathione level in fetal brain cells in primary culture and in suspens. J. Neurochem., 61: 1667-1671.
  42. Shores, E.M.; Picton, H.M. and Hunter, M.G. (2000). Differential regulation of pig theca cell steroidogenesis by LH, insulin like growth factor 1 and granulosa cells in serum-free culture. J. Reprod. Fertil., 118: 211–219.
  43. Simmen, R.C.M.; Ko, Y. and Simmen, F.A. (1993). Insulin-like growth factors and blastocyst development. Theriogenology, 39: 163–175.
  44. Skimmer, M.K.; Lobb, D. and Dorrington, J.H.(1987) Ovarian thecal/interstitial cells produce an epidermal growth factor-like substance. Endocrinology, 121: 1892-1899.
  45. Spicer, C.J. and Chamberlain, C.S. (2000). Production of insulin-like growth factor-1 by granulose cells but not thecal cells is hormonally responsive in cattle. J. Anim. Sci., 78: 2919–2926.
  46. Tosti, E. and Boni, R. (2004). Electric events during gamete maturation and fertilization in animals and humans. Human Reproduction Update, 10: 53-65.
  47. Tosti, E.; Boni, R. and Cuomo, A. (2002). Fertilization and activation currents in bovine oocytes. Reproduction, 124: 835–846.
  48. Yadav, P.; Kharche, S.D.; Goel, A.K.; Jindal, S.K. and Goel, P. (2013). Assessment of nuclear maturation and subsequent in-vitro embryo development of caprine oocytes with different supplementations in maturation medium. Indian. J. Anim. Sci., 83(10): 1048-1052.
  49. Yi, Y. J.; Kim, M. Y.; Lee, S. H.; Min, T. S.; Jin, D.I. and Park, C.S. (2003). Effect of cysteamine on in-vitro maturation, fertilization and culture of porcine oocytes. Kor. J. Anim. Reprod, 27(4): 275-280.
  50. Yoshida, Y.; Miyamura, M.; Hamano, S. and Yoshida, M. (1998). Expression of growth factor ligand and their receptor mRNAs in bovine ova during in-vitro maturation and after fertilization in-vitro. J. Vet. Med. Sci., 60: 549-554.
  51. Zhou, P.; Wu, Y.G.; Li, Q.; Lan, G.C.; Wang, G.; Gao, D. and Tan, J.H. (2008). The interactions between cysteamine, cystine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus- denuded oocytes. Reproduction, 135 : 605-611. 

Editorial Board

View all (0)