Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 53 issue 11 (november 2019) : 1440-1444

Immunohistochemical detection of alpha-smooth muscle actin and S-100 in bovine mammary gland with mastitis

Geeta Devi Leishangthem, Nittin Dev Singh, Amarjit Singh
1Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana-141 004, Punjab, India.
Cite article:- Leishangthem Devi Geeta, Singh Dev Nittin, Singh Amarjit (2019). Immunohistochemical detection of alpha-smooth muscle actin and S-100 in bovine mammary gland with mastitis. Indian Journal of Animal Research. 53(11): 1440-1444. doi: 10.18805/ijar.B-3674.
Fibrosis is a common finding in chronic mastitis. Epithelial-mesenchymal transition (EMT) plays a prominent role in fibrogenesis in adult tissues. The aim of this study was to investigate whether EMT occurs in bovine mastitis by assessing the expression or localization of alpha-smooth muscle actin (alpha-SMA), S-100 protein and caspase-3. Two normal bovine mammary gland tissue samples and five mastitic samples were used in the study. Antibodies to alpha-SMA, S-100 and caspase-3 were used for immunohistochemical studies. In mastitis there was increased expression of S-100 in the alveolar epithelial cells. Alpha-SMA was highly expressed in the areas where there is fibrosis in chronic mastitis. Further caspase-3 was observed in alveolar cells in mastitic tissue. Overexpression of S-100 and alpha-SMA directly correlates to the severity of mastitis.S-100 and alpha-SMA may serve as biomarkers to know the extent of tissue structural changes in mastitis. EMT could be one of the mechanistic pathways underlying the pathogenesis of fibrosis in mastitis. 
  1. Alkafafy, M., Rashed, R. and Helal, A. (2012). Immunohistochemical studies on the bovine lactating mammary gland (Bos taurus). Acta Histochemica.,114: 87–93. 
  2. Andreotti, C.S., Pereyra, E.A.L., Sacco, S.C., Baravalle, C., Renna, M.S., Ortega, H.H., Calvinho, L.F. and Dallard, B.E. (2017). Proliferation-apoptosis balance in Staphylococcus aureuschronically infected bovine mammary glands during involution. J Dairy Res., 84(2): 181-189. 
  3. Burvenich, C., Van Merris, V., Mehrzad, J., Diez- Fraile, A. and Duchateau, L. (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet Res., 34:521–564.
  4. Chen, Q., He, G., Zhang, W., Xu, T., Qi, H., Li, J., Zhang, Y. and Gao, M.Q. (2016). Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes. Sci Rep., 6: 27462. 
  5. Darby, I.A., Laverdet, B., Bonté, F. and Desmoulière, A. (2014). Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol., 7: 301–311. 
  6. Desmoulière, A., Chaponnier, C. and Gabbiani, G. (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair Regen., 13(1):7-12. 
  7. Donato, R., Cannon, B.R., Sorci, G., Riuzzi, F., Hsu, K., Weber, D.J. and Geczy, C.L. (2013). Functions of S100 proteins. Curr Mol Med.,13:24–57
  8. Gabbiani G. (2003).The myofibroblast in wound healing and fibrocontractive diseases. J Pathol., 200(4):500-503. 
  9. Guarino M., Tosoni A. and Nebuloni M. (2009). Direct contribution of epithelium to organ fibrosis: epithelial mesenchymal transition. Human Pathol., 40:1365–1376.
  10. Hellmén, E. and Isaksson, A. (1997). Immunohistochemical investigation into the distribution pattern of myoepithelial cells in the bovine mammary gland. J Dairy Res. 64(2):197-205.
  11. Hensen, S.M., Pavicic, M.J., Lohuis, J.A., de Hoog, J.A. and Poutrel B. (2000). Location of Staphylococcus aureus within the experimentally infected bovine udder and the expression of capsular polysaccharide type 5 in situ. J Dairy Sci., 83:1966–1975.
  12. Higashiyama, R., Nakao, S., Shibusawa, Y., Ishikawa, O., Moro, T., Mikami, K., Fukumitsu, H., et al Ueda, Y., Minakawa, K., Tabata, Y., Bou-Gharios, G. and Inagaki Y. (2011). Differential contribution of dermal resident and bone marrow-derived cells to collagen production during wound healing and fibrogenesis in mice. J Invest Dermatol., 131(2):529-36.
  13. Hu, Q., Cui, X., Tao, L., Xiu, L., Wang, T. and Wang, X. (2014). Staphylococcus aureus induces apoptosis in primary bovine mammary epithelial cells through Fas-FADD death receptor-linked caspase-8 signaling. DNA Cell Biol., 33(6):388-97.
  14. Janjanam, J., Singh, S., Jena, M.K., Varshney, N., Kola, S., Kumar, S., Kaushik, J.K., Grover, S., et. al., (2014). Comparative 2D-DIGE proteomic analysis of bovine mammary epithelial cells during lactation reveals protein signatures for lactation persistency and milk yield. PLoS ONE, 9(8): e102515. 
  15. Kalluri, R. and Neilson, E.G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest., 112:1776-1784.
  16. Kalluri, R. and Weinberger R.A. (2009). The basics of epithelial–mesenchymal transition. J Clin Invest.,119:1420-1428
  17. Kawasaki, Y., Imaizumi, T., Matsuura, H., Ohara, S., Takano, K., Suyama, K., Hashimoto, K., et. al., (2008). Renal expression of alpha-smooth muscle actin and c-met in children with Henoch-Schonlein purpura nephritis. Pediatr Nephrol.,23(6): 913-919
  18. Kisseleva, T. and Brenner, DA. (2008). Fibrogenesis of parenchymal organs. Proc Am Thorac Soc., 5(3):338-42. 
  19. Lutzow, Y.C., Donaldson, L., Gray, C.P., Vuocolo, T., Pearson, R.D., Reverter, A., Byrne, K.A., et. al ., (2008). Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection. BMC Vet Res., 4:18. 
  20. Okada, H., Danoff, T.M., Kalluri, R. and Neilson, E.G. (1997). The early role of FSP1 in epithelial-mesenchymal transformation. Am J Physiol., 273(4 Pt 2):F563–74
  21. Porter, A.G. and Jänicke, R.U. (1996). Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 6(2):99-104. 
  22. Sandbo, N. and Dulin, N. (2011). Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res., 158(4):181-96. 
  23. Schneider, M., Hansen, J.L. and Sheikh, S.P. (2008). S100A4: a common mediator of epithelial-mesenchymal transition, fibrosis and regeneration in diseases. J Mol Med (Berl)., 86 (5):507–522.
  24. Sharma, N. and Jeong, D.K. (2013). Stem Cell Research: A novel boulevard towards improved bovine mastitis management. Int J Biol Sci., 9(8):818-829. 
  25. Shintani, Y., Maeda, M., Chaika, N., Johnson, K.R. and Wheelock, M. J. (2008). Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor–â signaling. Am J Resp Cell Mol Biol., 38(1):95-104. 
  26. Whittaker, P., Kloner, R.A., Boughner, D.R. and Pickering, J.G. (1994). Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol., 89:397-410.
  27. Wu, Y. and Zhou, B.P. (2008). New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin. 40(7): 643-650. 
  28. Zackular, J.P., Chazin, W.J. and Skaar E.P. (2015). Nutritional immunity: S100 proteins at the host-pathogen Interface. J Biol Chem., 290(31):18991-18998. 
  29. Zeisberg, E.M, Potenta, S, Xie, L, Zeisberg, M. and Kalluri, R. (2007). Discovery of endothelial to mesenchymal transition as a source for carcinoma associated fibroblasts. Cancer Res., 67:10123-10128. 

Editorial Board

View all (0)