Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 53 issue 9 (september 2019) : 1252-1257

Estimation of genetic parameters of growth and egg production traits by animal model in IWK layer strain

P. Chandan, T.K. Bhattacharya, U. Rajkumar, L.L.L. Prince, R.N. Chatterjee
1ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad-500 030, Telangana, India.
Cite article:- Chandan P., Bhattacharya T.K., Rajkumar U., Prince L.L.L., Chatterjee R.N. (2019). Estimation of genetic parameters of growth and egg production traits by animal model in IWK layer strain. Indian Journal of Animal Research. 53(9): 1252-1257. doi: 10.18805/ijar.B-3638.
Indian White Leghorn strain-IWK has been improved for higher egg weight as well as number over last twelve generations at ICAR-Directorate of Poultry Research, Hyderabad. The data collected on various economic traits of egg production were analyzed using REML approach of animal model. Current study showed that the heritability estimate of body weight, age at sexual maturity (ASM), egg numbers and egg weight was moderate to high, low to moderate, low and high, respectively. The body weight was positively correlated with egg weight but negatively correlated with egg numbers. The body weight at 16 and 20 weeks were negatively correlated with ASM and were very important for achieving early ASM. ASM was negatively correlated with egg numbers. The egg weight regressed as the egg number increased. The part period egg production EP52 was highly correlated with EP64; therefore EP52 can be used for selecting parents for higher egg number instead of EP64. 
  1. Abbasi, M. A., Abdollahi-Arpanahi, R., Maghsoudi, A., Vaez Torshizi, R. and Nejati-Javaremi, A.(2012). Evaluation of models for estimation of genetic parameters and maternal effects for early growth traits of Iranian Baluchi sheep. Small Ruminant Research 104:62–69.
  2. Ananta, K. Sanjeev, K. and Abdul R. (2016). Genetic analysis of layer performances in a selected line of Rhode Island Red chicken. Indian Journal of Animal Sciences 86 (11): 1291–1295.
  3. Aslam, M. I., Bastiaansen, J. W., Crooijmans, R. P., Ducro, B. J., Vereijken, A. and Groenen, M. A.(2011)..Genetic varinces, heritbilities andmternal effects on body weight, breast meat yield, meat quality traits and the shape of the gowth curve in turkey birds. BMC genetics 12-14.
  4. Brah, G.S. and Dev, D.S. (1981). Results of selection for egg production in chickens. Indian Journal of Poultry Science. 16: 243-50.
  5. Chaudhary, M. L., Brah, G. S. and Khurana, S. (2009). Inheritance of body weight ratios and their relationship with economic traits in Whilte Leghorn chicken. Indian Journal Of Poultry Science 44 (2): 167-171.
  6. Chen, C.F., Lee, Y.P., Lee, Z.H., Huang, S.Y. and Huang ,H.H. (1993). Heritabilities and genetic correlations of egg quality traits in Taiwan local chicken. Asian Australian Journal of Animal Sciences 6 (3); 433-440.
  7. Clement, V., Bibe, B. Verrier, E. Elsen, J., Manfredi, E., Bouix, J. and Hanocq, E. (2001). Simulation analysis to test the inûuence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects. Genetic Selection and Evolution 33: 369–395.
  8. Dana, N., vander Waaij, E. H. and van Arendonk, J..A.M. (2011). Genetic and phenotypic parameter estimates for body weights and egg production in Horro chicken of Ethiopia. Tropical Animal Health and Production 43:21-28.
  9. Dickerson, G.E. and Hughes, W. F. (1964). Body Weight: A critical factor in laying performance. The Kimberchik News (Aug.): 1-8
  10. Fairfull, R. W. and Gowe, R. S. (1990). In: Poultry Breeding and Genetics. [R. D. Crawford (Ed.)] Elsevier, Amsterdam, The Netherlands. p 705.
  11. Francesh, A., Estany, J., Alfanso, L and Iglesias M. (1997). Genetic parameter for egg number, egg weight and egg shell colour in three Catalan breed. Poultry Science 76 :1627-1631.
  12. Galton, F.(1889). Natural Inheritance.: Macmillan. London
  13. Gerstmayr, S. (1992). Impact of the data structure on the reliability of the estimated genetic parameters in an animal model with maternal effects. Journal of Animal Breeding and Genetics 109: 321–336.
  14. Ghorbani, S., Mojtaba, T., Ali, M. andRostam, A. A. (2013). Estimates of (co)variance components for production and reproduction traits with different models in Fars native fowls. Livestock Science 151 ( 2): 115 - 123.
  15. Henderson, C. R. (1988). Theoretical basis and computational methods for a number of different animal models. Journal of Dairy Science71(2):1-16.
  16. Hill, W. G. and Kirkpatrick, M. (2010). What animal breeding has taught us about evolution. Annual Review of Ecology Evolution System 41: 1–19.
  17. Hill, W.G. (1978). Estimation of heritability by regression using collateral relatives: linear heritability estimation. Genetic Research Camb. 32: 265-274.
  18. Karamia, K., Zerehdarana, S., Tahmoorespura, M., Barzanoonia, B. and Lotfib, E. (2017). Genetic evaluation of weekly body weight in Japanese quail using random regression models. British Poultry Science 58 (1): 13–18.
  19. Kennedy, E. W., Schaeffer, L. R. and Sorensen, D. A. (1988). Genetic properties of animal models. Journal of Dairy Science 71 (2):17-26.
  20. Kruuk, L. E. B. and Hadfield, J. D. (2007). How to separate genetic and environmental causes of similarity between relatives. Journal of Evolution Biology 20:1890–1903.
  21. Laxmi, J. P., Gupta, B. R., Chartterjee, R. N. Sharma, R. P. and Reddy, R. V. (2009). Combining ability analysis for certai economic traits in White Leghorn. Indian Journal of Poultry Science 44 (3): 291-295.
  22. Ledur, M. C., Schmidt, G. S., Figueiredo, E. A. P., Avila, V. S. and Balen, L. (1993). Genetic and phenotypic parameters for productive traits in white egg layer stocks. Pesquisa Agropecuaria Brasileira 28:1031–1037.
  23. Lesson, S. and Summers, J.D. (1987). Effect of Immature body weight on laying performance. Poultry Science 66: 1924-28.
  24. Lynch, M., and Walsh, B. (1998). Genetics and Analysis of Quantitative Traits, SinauerAssoc Inc., Sunderland, USA.
  25. Meyer, K. (1989). Restricted maximum likelihood to estimate variance components for animal models with several random effects using a derivative-free algorithm.Genetics Selection Evolution21:317-340
  26. Meyer, K. (2007). WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML)[J]. Journal of Zhejiang University Science B 8 (7): 815-821.
  27. Misztal, I. (1990). Restricted maximum likelihood estimation of variance components in animal model using sparse matrix inversion and a supercomputer. Journal of Dairy Science73: 163–172.
  28. Mousseau, T. A. and Roff, D. A. (1987). Natural selection and the heritability of fitness components. Heredity 59: 181–197. 
  29. Poggenpoel, D. G., Ferreira, G. F., Hayes, J. P. and Preez, J. J. D.U. (1996). Response to long-term selection for egg production in laying hens. British Poultry Science 37:743-756.
  30. Preisinger, R. and Savas, T. (1997). VergleichzweierMethodenzurSchätzung der Varianz komponentenfür Leistungsmerkmalebei Legehenne. Züchtungkunde 69: 142-152.
  31. Provine, W. B. (2001). The Origins of Theoretical Population Genetics. University of Chicago Press Chicago:
  32. Reddy, B.L.N., Panda, A.K., Reddy, M.R., Rao, S.V.R. and Praharaj, N.K. (2001). Studies on the influence of Juvenile growth traits on laying performance in egg type chickens. Indian Journal of Poultry Science 36: 290-93.
  33. Saatci, M. Omed, H,.and Dewi, A.P. I.(2006). Genetic parameters from univariate and bivariate analyses of egg and weight traits in Japanese quail. Poultry Science 85:185–190.
  34. Silva, M. A., Euclydes, R. F., Soares, P. R. and Fonseca, J. B. (1984). Análisegenética de características de importânciaeconô micaem poedeirasleves. RevistaBrasileira de Zootecnia 13:82–94.
  35. Sorensen, D. A. and Kennedy , B. W.(1986). Analysis of selection experiments using mixed model methodology. Journal of Animal Sciences 63: 245-258.
  36. Sosamma, I. and Singh, B.P. (1979). Genetic Architecture of a White Leghorn population. Indian Veterinary Journal 56: 849-54.
  37. Summers, J.D. and Lesson, S. (1983). Factors influency early egg size. Poultry Science 62: 1115-59.
  38. Tandon, H.P., Rao, G.V. and Lachiramani, R. (1968). Studies on the inheritance of sexual maturity in White Leghorns. Indian Veterinary Journal. 45: 517-26.
  39. Theo P. and Hysex-E. (1997). Weight at Five Weeks Determines Future Laying Performance. World Poultry-Misset, 13 (6): 43-44.
  40. Thompson, R. ( 2008). Estimation of quantitative genetic parameters. Proceedings of Biological Science 275 (1635): 679–686.
  41. Venugopal, S. (1996). Efficiency of part production to annual production in White Leghorn. M.V.Sc thesis UAS, Bangalore. 
  42. Veronica, M., Nurgiartiningsih, A., Mielenz, N., Preisinger, R., Schmutz, M. and Schüler, L. (2004). Heritability and genetic correlations for monthly egg production and egg weight of White Leghorn hens estimated based on hen-housed and survivor production. Arch. Geflügelk 69 (3): 98–102.
  43. Wei, M. and van der Werf, J. H. J. (1993). Animal model estimation of additive and dominance variances in egg production traits of poultry. Journal of Poultry Science 71:57-65. 
  44. Wijga, S. Parmentier, H. K., Nieuwl , M. G. B. and Bovenhuis, H. (2009). Genetic parameters for levels of natural antibodies in chicken lines divergently selected for specific antibody response. Poultry Science 88:1805–1810.
  45. Wolc, A., Arango, J., Settar, P., Fulton, J. E., O’Sullivan, N. P., Preisinger, R. et al (2013). Analysis of egg production in layer chickens using a random regression model with genomic relationships. Poultry Science 92:1486–1491.
  46. Zhou, W., Horii, S., Ogane, H., Komatsu, M., Osada, H. and Hosoya, M. (2000). Immature body weight of layers and their laying performance. Japanese Poultry Science 37: 43-49. 
  47. Zhou, W., Horii, S., Ogane, H., Komatsu, M., Osada, H. and Hosoya, M. (2000). Immature body weight of layers and their laying performance. Japanese Poultry Science. 37: 43-49.

Editorial Board

View all (0)