Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 53 issue 9 (september 2019) : 1181-1187

Analysis of certain blood biochemical parameters in relation to oxidative stress in chronic mitral valve insufficiency of dogs with heart failure

M.S. Indhu, P.S.L. Sesh, K. Loganathasamy, K. Jeyaraja, K. Padmanath, V. Pandiyan
1<div style="text-align: justify;">Department of Veterinary Biochemistry, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai-600 007, India.</div>
Cite article:- Indhu M.S., Sesh P.S.L., Loganathasamy K., Jeyaraja K., Padmanath K., Pandiyan V. (2018). Analysis of certain blood biochemical parameters in relation to oxidative stress in chronic mitral valve insufficiency of dogs with heart failure. Indian Journal of Animal Research. 53(9): 1181-1187. doi: 10.18805/ijar.B-3632.
Chronic mitral valve insufficiency (CMVI) is the most common acquired heart disease in dogs. In heart failure, the cellular oxygenation and metabolism are affected, which leads to the production of free radicals. Free radicals damage DNA, lipid and protein molecules in cells. In the present experiment, blood samples were collected from CMVI dogs with heart failure and were compared with the results obtained from healthy dogs. A significant increase in the levels of xanthine oxidase, AST, LDH and CK and decrease in the activity of catalase were noticed in CMVI dogs when compared to healthy dogs, which revealed overall cardiac and skeletal muscle damage in CMVI dogs. Results of biochemical parameters revealed an increase in urea level and decrease in sodium, potassium, and calcium levels in CMVI dogs as compared to control dogs, all of which indicate cardiac damage in dogs. Study on hematological parameters revealed a significant decrease in Hb, PCV, RBC and platelet counts and an increase in total WBC counts and percentage of neutrophils, decrease in percentage of the lymphocyte and monocyte in CMVI dogs than control. These results indicate secondary phenomenon to heart failure. The present research data indicates the usefulness of these biomarkers in the diagnosis and prognosis of CMVI with heart failure in dogs.
  1. Ahmed, M.I, Gladden, J.D, Litovsky, S.H., et al. (2010). Increased oxidative stress and cardiomyocyte myofibrillar degeneration in patients with chronic isolated mitral regurgitation and ejection fraction >60%. J Am Coll Cardiol., 55: 671–679.
  2. Alsafwah, S., LaGuardia, S.P and Newman, K.P. (2007). Congestive heart failure is a systemic illness: a role for minerals and micronutrients. Clin. Med. Res., 5(4): 238-243.
  3. Amado, L. C., Saliaris , A.P., Shubha, V.Y., Lehrke, S., John, M.S., Xie, J., Stewart, G., et al . (2005). Xanthine oxidase inhibition ameliorates cardiovascular dysfunction in dogs with pacing-induced heart failure. J. Mol. Cell. Cardiol., 39: 531–536. 
  4. Atkins, C. E., Brown, W.A and Coats., J.R. (2002). Effects of long-term administration of enalapril on clinical indicators of renal function in dogs with compensated mitral regurgitation. J. Am. Vet. Med. Assoc., 221: 654–658.
  5. Ayala, A., Munoz, M.F. and Arguelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mecanisms of malondialdehyde    and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity. 1-31
  6. Baumer, A.T., Flesch, M., Wang, X., Shen, Q., Feuerstein, G.Z. and Bohm. M. (2016). Antioxidative enzymes in human hearts with idiopathic dilated cardiomyopathy J. Mol. Cell. Cardiol. 97: 93–105.
  7. Beers, R.F. and Sizer I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 95: 133- 140.
  8. Bergmeyer, H.I., Gawehn, K. and Grassl, M. (1974). In Methods of Enzymatic analysis (Bergmeyer, H.U. ed.) Second edition, Volume I, 521-522, Academic Press Inc., New York, NY.
  9. Berry, C. E and Hare, J.M. (2004). Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. Journal of Physiology, 555 (3): 589–606. 
  10. Besche, B., Chetboul, V., Lefay, M.P.L. and Grandemange, E. (2007). Clinical evaluation of imidapril in congestive heart failure in dogs: results of the EFFIC study. J. Small. Anim. Pract., 48: 265-270. 
  11. Boswood, M. A and Murphy, A. (2006). The effect of heart disease, heart failure and diuresis on selected laboratory and electrocardiographic    parameters in dog. J.Vet.Cardiol., 8: 1-9. 
  12. Cappola, T.P., Kass, D.A and Nelson, G.S. (2001). Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation, 104: 2407–2411.
  13. Cheng, W., Li, B., Kajstura J., et al. (1995). Stretch-induced programmed myocyte cell death. J Clin Invest., 96: 2247–2259.
  14. Dhalla, A., Hill, M. and Singal, P. (1996). Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol., 28: 506–514.
  15. Ekelund, U. E., Harrison, R.W., Shokek, O., Thakkar, R.N., Tunin, R.S., Senzaki, H., Kass, D.A.,Marban, E. and Hare. J.M. (1999). Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res., 85: 437– 445. 
  16. Farabaugh, A.E., Freeman, L.M., Rush, J.E. and George, K.L. (2004). Lymphocyte subpopulations and hematologic variables in dogs with congestive heart failure. J. Vet. Intern. Med., 18: 505–509. 
  17. Freeman, L. M., Rush, J.E., Milbury, P.E. and Blumberg, J.B. (2005). Antioxidant status and biomarkers of oxidative stress in dogs with congestive heart failure. J. Vet. Intern. Med., 19: 537–541. 
  18. Gorman, S.L.T. and Zweier, J.L. (1990). Evaluation of the role of xanthine oxidase in myocardial repurfusion injury, J.Biol.Chem., 265:6656-6663. 
  19. Haggstrom, J., Hansson, K., Kvart, C and Swenson, L. (1992). Chronic valvular disease in the Cavalier King Charles Spaniel in Sweden. Vet Rec., 131: 549-53. 
  20. Horne, B.D., Anderson, J. L., John, J.M., Weaver, A., Bair, T.L., Jensen, K.R., Renlund, D.G. and Muhlestein. J.B. (2005). Which white blood cell subtypes predict increased cardiovascular risk? J. Am. Coll. Cardiol., 45: 1638-1643. 
  21. Hosten, A.O. (1990). Clinical Methods: The history, physical, and laboratory examinations. 3rd edition.Walker, H.K., W.D. Hall and J.W. Hurst. Pp: 258-267.
  22. Hyun, C. and Layulo, L (2011). Calcium related genes in dogs as potential cardiac biomarkers for the detection of chronic mitral valve disease. Recent Patents on Biomarkers, 1: 68-80. 
  23. Jong, D. J. W., Schoemaker, R.G., De Jonge, R., Bernocchi, P., Keijzer, E., Harrison, R., Sharma, H.S. and Ceconi, C. (2000). Enhanced expression and activity of xanthine oxidoreductase in the failing heart. J. Mol .Cell .Cardiol., 32(11): 2083–2089.
  24. Khaper, N., Kaur, K., Li, T., Farahmand, F. and Singal, P.K. (2003). Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem., 251 (1-2): 9-15.
  25. Kyne, L., Hausdorff, J and Knight, E. (2000). Neutrophilia and congestive heart failure after acute myocardial infarction. Am. Heart. J., 139: 94–100. 
  26. Li, G., Chen, Y., Saari, J.T. and Kang, Y.J. (1997). Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol., 273: H1090–1095.
  27. Lohmeier, T.E., Mizelle, H.L., Reinhart, G.A and Montani, J.P (2000). Influence of angiotensin on the early progression of heart failure. Am. J. Physiol., 278: 74–86.
  28. Pandey, N.R., Kaur, G., Chandra, M., Sanwal, G.G and Misra, M.K. (2000). Enzymatic oxidants and antioxidants of human blood platelets in unstable angina and myocardial infarction. Int. J. Cardiol., 76: 33-38. 
  29. Pendergrass, K.D., Varghese, S.T., Rafferty, K.M., Brown, M.E., Taylor, W.R and Davis, M.E (2011). Temporal effects of catalase overexpression on healing following myocardial infarction. Circ Heart Fail., 4(1):98-106. 
  30. Prasad, K., Gupta, J., Kalra, J., et al. (1996). Oxidative stress as a mechanism of cardiac failure in chronic volume overload in canine model. J Mol Cell Cardiol., 28: 375–385.
  31. Reimann, M. J., Haggstrom, J., Moller, J, E., Lykkesfeldt, J., Falk, T and Olsen, L.H. (2017). Markers of oxidative stress in dogs with myxomatous mitral valve disease are influenced by sex, neuter status, and serum cholesterol concentration. J Vet Intern Med., 31(2): 295-302
  32. Rudiger, A., Burckhardt, O.A., Harpes, S.P., Muller, A. and Follath, F. (2006). The relative lymphocyte count on hospital admission is a risk factor for long – term mortality in patients with acute heart failure. Am.J. Emer. Med., 24: 451-454.
  33. Satho, K. (1978). Serum lipid peroxidation in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta., 90: 37- 43. 
  34. Schaufelberger, M., Andersson, G., Erikssonj, B.O., Grimbyt, G., Held, P and Swedberg, K. (1996). Skeletal muscle changes in patients with chronic heart failure before and after treatment with enalapril. European Heart Journ ., 17: 1678-1685.
  35. Sesh, P. S. L., Venkatesan, P., Jeyaraja, K., Chandrasekar, M. and Pandiyan, V. (2013). Blood biochemical, enzymatic and hematological status of dogs affected with dilated cardiomyopathy. International Journal of Advanced Veterinary Science and Technology, 2(1): 47-51.
  36. Sesh, P.S.L., Venkatesan, P., Jeyaraja, K., Chandrasekar, M. and Pandiyan,V. (2015). Xanthine oxidase as a biochemical marker of dilated cardiomyopathy in dogs. Indian J. Anim. Res., 49 (2): 187-190. 
  37. Snedecor, G.W. and Cochran. W.G (1994). Statistical Method 9th edition, Iowa State University Press, Ames, U.S.A.
  38. Tanner, H., Moschovitis, G and Kuster, G (2002). The prevalence of anemia in chronic heart failure. Int. J. Cardiol., 86: 115–121. 
  39. Tomaselli, G.F., Beuckelmann, D.J., Calkins, H.G., Berger, R.D., Kessler, P.D., Lawrence, L.H., Kass, D., Feldman, A.M and Marban, E (1994). Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation, 90: 2534–2539.
  40. Welshman, S.E. and Carol Rixon, E (1967). Colorimetric estimation of lactate dehydrogenase isoenzymes by urea inhibition. Clin. Chim. Acta., 19: 121-123.
  41. Xia,Y., Khatchikian,G. and Zweier,J. (1996). Adenosine deaminase inhibition prevents free radical mediated injury in the post ischaemic heart. J. Biol. Chem., 271: 10096-10102. 

Editorial Board

View all (0)