Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 53 issue 7 (july 2019) : 886-889

Molecular characterization of MHC class II DRA cDNA in Deoni cattle

K. Swathi, M. Gnana Prakash, D. Sakaram, T. Raghunandan, A. Sarat Chandra, P. Kalyani
1Department of Animal Genetics and Breeding, College of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University, Hyderabad-500 030, Telangana, India.
Cite article:- Swathi K., Prakash Gnana M., Sakaram D., Raghunandan T., Chandra Sarat A., Kalyani P. (2018). Molecular characterization of MHC class II DRA cDNA in Deoni cattle. Indian Journal of Animal Research. 53(7): 886-889. doi: 10.18805/ijar.B-3592.
The present study was undertaken to clone and characterize DRA gene in Deoni cattle. The cDNA for the DRA gene was amplified by using specific primers designed based on available cattle sequences and purified products were cloned in competent E.coli (DH5á) strain. The full length 1013bp product of cDNA of DRA contained a single ORF of 762 nucleotides that coded for 253 amino acids translated product. Twenty four amino acids formed signal peptide while 229 constituted mature peptide. The deduced amino acid sequences resembled those of class II molecules of other species for all the conserved residues having critical functional role. But a single N-linked glycosylation site in á1 was observed in cattle and buffalo when compared to human and swine which contain a second site in á2 domain. The signal peptide was found more variable among the species compared. Comparison of nucleotide and amino acid sequences among related species and dendrogram constructed revealed that the cattle sequences are more similar to buffalo sequences. 
  1. Aida, Y., Chikara, K., Akiramorooka, Y.N., Keiji, O., Takeshi, U. and Masatoshi, A. S. (1994). Cloning of cDNA and the molecular evolution of bovine MHC class II DRA gene. Biochem andBiophys Res commun. 244 (1):195-202.
  2. Andersson, L. (1996). Major histocompatibility complex evolution. In: The major Histocompatibility Complex of Domestic Animal Species. Boca Raton (FL): CRC Press. 1-5.
  3. Ballingall, K. T., Rocchi, M. S, Mc Keever, D. J. and Wright, F. (2010). Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep. PLoS One. 5(6):11402. 
  4. Dukkipati, V. S. R., Blair, H. T., Garrick, D. J. and Murray, A. (2006). ‘Ovar Mhc’ - ovine major histocompatibility complex: role in genetic resistance to diseases. NZ Vet J. 54:153-160. 
  5. Kamath, P. L. and Getz, W. M. (2011). Adaptive molecular evolution of the major histocompatibility complex genes, DRA and DQA, in the genus Equus. BMC Evol Biol.; 11:128.
  6. Klein, J. (1986). Nature History of the Major Histocompatibility Complex. (NY): Wiley. New York
  7. Kulski, J. K., Shiina, T., Anzai, T, Kohara, S and Inoko, H. (2003). Comparative genomic analysis of the MHC: The evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev.190:95-122.
  8. Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7): 1870-1874.
  9. Lazzaro, B. P. and Little, T. J. (2009) Immunity in a variable world. Philos Trans R Soc Lond B Biol Sci. 364:15-26.
  10. Lewin, H., Russel. G. and Glass, E. (1999). Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunol Rev. 167:145-158. 
  11. Luis, C., Cothran, E. G., Oom, M. M. and Bailey, E. (2005). Major histocompatibility complex locus DRA polymorphism in the endangered Sorraia horse and related breeds. J Anim Breed Genet. 122:69-72. 
  12. Morris, K. (2009). The feline major histocompatibility complex. Univ Sydney Undergrad Res J. 1:75-97.
  13. Niranjan, S. K., Deb, S. M., Sharma, A., Mitra, A. and Kumar, S. (2009). Isolation of two cDNAs encoding MHC-DQA1 and -DQA2 from the water buffalo, Bubalus bubalis. Vet Immunol Immunopathol.130: 268-271. 
  14. Ploegh, H. and Watts, C. (1998). Antigen recognition. Curr Opin Immunol. 10: 57–58.
  15. Russell, G.C. and Gallagher, A. (1996). Polymorphism in bovine DRA gene detected by PCR-RFLP with expand PCR system. Biochemica. 1:34-36.
  16. Sakaram, D., Niranjan, S. K., Kumar, S., Naskar, S., Deb, S. M., Mitra, A., Sharma. A. and Sharma, D. (2010). cDNA characterization and molecular analysis of buffalo MHC class II gene, DRA (Bubu-DRA). J Appl Anim Res. 37(1): 73-76.
  17. Sena, L., Schneider, M. P. C., Brenig, B., Honeycutt, R. L., Womack, J. E and Skow, L. C. (2003). Polymorphism in MHC DRA and DRB alleles of water buffalo (Bubalus bubalis) reveal different features from cattle DR alleles. Anim. Genet. 34 (1):1-10.
  18. Sena, L., Schneider, M. P., Brenig, B. B., Honeycutt, R. L., Honeycutt, D. A., Womack, J. E. and Skow, L. C. (2011). Polymorphism and gene organization of water buffalo MHC-DQB genes show homology to the BoLA DQB region. Anim. Genet. 42 (4):378-385. 
  19. Soen, Y., Chen, D. S., Kraft, D. L., Davis, M. M., Brown, P. O. (2003). Detection and characterization of cellular immune responses using peptide-MHC microarrays. PLoS Biol.1(3): 65. 
  20. Sun, Y. K., Xi, D. M., Li, G. Z., Hao, T. T., Chen, Y. H. and Yang, Y. A. (2014). Genetic characterization of MHC class II DQB exon 2 in gayal (Bos frontalis). Biotech Biotech Equip.28 (5): 827-833. 
  21. Trowsdale, J. (1995). “Both man & bird & beast”: comparative organization of MHC genes. Immunogenet.41:1-17. 

Editorial Board

View all (0)