Major histocompatibility complex (DRB3) gene expression pattern indicates differences in Brucella abortus S19 vaccine induced immune response in Karan Fries and Sahiwal cattle 

DOI: 10.18805/ijar.B-3577    | Article Id: B-3577 | Page : 156-160
Citation :- Major histocompatibility complex (DRB3) gene expression pattern indicates differences in Brucella abortusS19 vaccine induced immune response in Karan Fries and Sahiwal cattle.Indian Journal Of Animal Research.2019.(53):156-160
D. Ravi Kumar, S.K. Mishra, Anshuman Kumar, Vineeth M.R., S. Jayakumar, A . Sakthivel Selvan, T. Karuthadurai, Pallab Chaudhuri, R.S. Kataria and S.K. Niranjan ravikumardhanapal@gmail.com
Address : Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal-132 001, Haryana, India.
Submitted Date : 17-02-2018
Accepted Date : 8-05-2018

Abstract

Brucella abortus S19 strain vaccination is most effectively used as a tool to control the brucellosis in cattle. To understand the genetic basis of differences in immune responsiveness after immunization in cattle of different genotypes, we assessedthe expression of MHC-DRB3 antigen receptor molecule in six each female calves of Karan Fries crossbreds (KF, Bos indicus x Bos taurus) and Sahiwal (Bos indicus) vaccinated with Brucella S19. Serum and peripheral blood mononuclear cells (PBMC) were isolated from blood collected on 0(before vaccination) and 7, 14 and 28 day of vaccination. Antigenic response was assessed for these days in both the groups using Rose Bengal Plate form Test (RBPT). At 0d, the calves of both groups showed no antigen agglutination, confirming the calves free from the infection.The serum of 7d onward started showing the agglutination with more strong response in later stages specifically in KF, indicating increased immune response against Brucella. Therefore, RBPT can be used as earliest screening (7d onward) for Brucella antigenic reactivity in both cattle groups. The expression of DRB3 gene started with slight upregulation after vaccination,in general, however without any significant differences between two different genetic groups upto14d.The significant (p<0.01) higher expression (8 times) of DRB3was observed in KF than Sahiwal at 28d. The study indicated that antigenic reactivity and MHC-DRB3 expression elicited by Brucella S19 vaccination was more prominent in KFduring initial days, which may provide an extra advantage to the host for antigen binding, thereby better immune protection at later stage. 

Keywords

Brucella abortusS19 Brucellosis Cattle Gene expression MHC-DBR3.

References

  1. Adams, L. G. (2002). The pathology of brucellosis reflects the outcome of the battle between the host genome and the Brucella genome. Veterinary Microbiology 90:553-561.
  2. Ali, S., Ali, Q., Abatih, E. N., Ullah, N., Muhammad, A., Khan, I., Akhter, S. (2013). Sero-prevalence of Brucella abortus among dairy cattle and buffaloes in Pothohar Plateau, Pakistan. Pakistan journal of zoology, 45(4): 1041-1046.
  3. Barrionuevo, P., Cassataro, J., Delpino, M. V., Zwerdling, A., Pasquevich, K. A., Samartino, C. G., Giambartolomei, G. H. (2008). Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2. Infection and Immunity, 76(1): 250-262.
  4. Blasco, J. M., Marin, C., and De Bagües, M. J. (1993). Efficacy of Brucella suis strain 2 vaccine against Brucella ovis in rams. Vaccine, 11(13): 1291-1294.
  5. Corbel, M. J. (1997). Brucellosis: an overview. Emerging Infectious Disease 3:213-221.
  6. Corbel, M. J., Alton, G. G., and Banai, M. (2006). Brucellosis in humans and animals: Produced by the World Health Organization in collaboration with the Food and Agriculture Organization of the United Nations and World Organisation for Animal Health. Health WHO/CDS/EPR.
  7. Davies, G., Cocks, E., Hebert, N. (1980). Brucella abortus (strain 19) vaccine:(a) determination of the minimum protective dose in cattle;(b) the effect of vaccinating calves previously inoculated with anti-Brucella abortus serum. Journal of biological standardization, 8(3): 165-175.
  8. Deyoe, B. L., Dorsey, T. A., Meredith, K. B., Garrett, L. (1979). Effect of reduced dosages of Brucella abortus strain 19 in cattle vaccinated as yearlings. In Proceedings, annual meeting of the United States Animal Health Association, 83: 92.
  9. Díaz, R., Casanova, A., Ariza, J., Moriyon, I. (2011). The Rose Bengal Test in human brucellosis: a neglected test for the diagnosis of a neglected disease. PLOS Neglected tropical diseases, 5(4): 950.
  10. Dietz, A. B., Detilleux, J. C., Freeman, A. E., Kelley, D. H., Stabel, J. R., Kehrli, M. E. (1997). Genetic Association of Bovine Lymphocyte Antigen DRB3 Alleles with Immunological Traits of Holstein Cattle1. Journal of Dairy Science, 80(2): 400-405.
  11. García, and Carrillo, C. (1980). Comparison of B. melitensis Rev. 1 and B. abortus strain 19 as a vaccine against brucellosis in cattle. Zoonoses and Public Health, 27(2): 131-138.
  12. Godfroid, J., Scholz, H. C., Barbier, T., Nicolas, C., Wattiau, P., Fretin, D., Saegerman, C. (2011). Brucellosis at the animal/ecosystem/    human interface at the beginning of the 21st century. Preventive Veterinary Medicine, 102(2): 118-131.
  13. Irmak, H., Buzgan, T., Evirgen, O., Akdeniz, H., Demiroz, A. P., Abdoel, T. H., Smits, H. L. (2004). Use of the Brucella IgM and IgG flow assays in the serodiagnosis of human brucellosis in an area endemic for brucellosis. The American Journal of Tropical Medicine And Hygiene, 70(6): 688-694.
  14. Kamboh, A. A., Rind, R., Soomro, A. H., Shah, A. H., Rajput, N. (2007). Detection of Brucella abortus specific antibodies from the sera of cattle and buffaloes. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 23:55-58
  15. Kishore, A., Sodhi, M., Khate, K., Kapila, N., Kumari, P., Mukesh, M. (2013). Selection of stable reference genes in heat stressed peripheral blood mononuclear cells of tropically adapted Indian cattle and buffaloes. Molecular and Cellular Probes, 27(3-4): 140-144.
  16. Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(“Delta Delta C (T)) method. Methods 25: 402–408.
  17. Manthei, C. A. (1968). Application of research to bovine brucellosis control and eradication programs. Journal of Dairy Science, 51(7):1115-1120.
  18. Miranda, K. L., Dorneles, E. M. S., Pauletti, R. B., Poester, F. P., Lage, A. P. (2015). Brucella abortus S19 and RB51 vaccine immunogenicity test: Evaluation of three mice (BALB/c, Swiss and CD-1®) and two challenge strains (544 and 2308). Vaccine, 33(4): 507-511.
  19. Moreno, E. (2002). Brucellosis in central America. Veterinary microbiology, 90(1-4): 31-38.
  20. Moriyón, I., Grilló, M. J., Monreal, D., González, D., Marín, C., López-Goñi, I., Blasco, J. M. (2004). Rough vaccines in animal brucellosis: structural and genetic basis and present status. Veterinary Research, 35(1): 1-38.
  21. Murphy, E., Robertson, G. T., Parent, M., Hagius, S. D., Roop, R. 2., Elzer, P. H., Baldwin, C. L. (2002). Major histocompatibility complex class I and II expression on macrophages containing a virulent strain of Brucella abortus measured using green fluorescent protein-expressing brucellae and flow cytometry. FEMS Immunology & Medical Microbiology, 33(3), 191-200.
  22. Neglected Zoonotic Diseases. http://www.who.int/neglected_diseases/zoonoses/infections_more/en/. Accessed 24 May 2016
  23. Newman, M. J., Truax, R. E., French, D. D., Dietrich, M. A., Franke, D., and Stear, M. J. (1996).Evidence for genetic control of vaccine-induced antibody responses in cattle.Veterinary Immunology and Immunopathology, 50(1-2): 43-54.
  24. Office International des Épizooties. (eds). (2013). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 7th Edn Vol. 1 and 2 Chap. 2.4.3., 2.7.2., and 2.7.9. (Paris: OIE). http://www.oie.int/en/international-standard-setting/terrestrial-manual/access-    online/ (accessed April 29, 2014)
  25. Olsen, S. C., Thoen, C. O., Cheville, N. F. (2004).Brucella. Pathogenesis of Bacterial Infections in Animals, Third Edition, 309-319.
  26. Price, R. E., Templeton, J. W., Smith, R. I. I. I., Adams, L. G. (1990). Ability of mononuclear phagocytes from cattle naturally resistant or susceptible to brucellosis to control in vitro intracellular survival of Brucella abortus. Infection and Immunity, 58(4): 879- 
  27. Verger, J. M., Grayon, M., Zundel, E., Lechopier, P., Olivier-Bernardin, V. (1995). Comparison of the efficacy of Brucella suis strain 2 and Brucella melitensis Rev. 1 live vaccines against a Brucella melitensis experimental infection in pregnant ewes. Vaccine, 13(2): 191-196.
  28. Verma, S., Thakur, A., Katoch, S., Shekhar, C., Wani, A. H., Kumar, S., Sharma, M. (2017). Differences in innate and adaptive immune response traits of Pahari (Indian non-descript indigenous breed) and Jersey crossbred cattle. Veterinary Immunology and Immunopathology, 192: 20-27. 

Global Footprints