Greater potentiality of sperm membrane bound fertility associated antigen to withstand oxidative stress ensuing improved sperm function of cryopreserved bull spermatozoa

DOI: 10.18805/ijar.B-3565    | Article Id: B-3565 | Page : 572-577
Citation :- Greater potentiality of sperm membrane bound fertility associated antigen to withstand oxidative stress ensuing improved sperm function of cryopreserved bull spermatozoa.Indian Journal Of Animal Research.2019.(53):572-577
Megha Pande, N. Srivastava, S. Kumar, Y.K. Soni, M. Kumar, S. Tyagi, A.S. Sirohi, N. Chand, Omerdin and S. Arya megha985@gmail.com
Address : ICAR-Central Institute for Research on Cattle, Meerut-250 001, Uttar Pradesh, India.
Submitted Date : 13-01-2018
Accepted Date : 9-03-2018

Abstract

Fertility associated antigen (FAA) are more abundant in semen of bulls with high fertility. The objective was to investigate relationship of FAA, either membrane bound and/or in seminal plasma, with that of markers of oxidative stress, mitochondrial activity and acrosome integrity of live cells, in cryopreserved spermatozoa. Grouping of bulls was done by electrophoretic profiling of proteins from seminal plasma (SP), and sperm membrane (SM), based on presence/absence of the FAA in SP and/or SM or both. Group I had detectable FAA in both SP and SM; Group II, FAA detected only in SM; Group III, detectable FAA only in SP and Group IV, undetectable FAA in both SP and SM. At post-thaw stage, the lipid peroxide levels were significantly lower (p<0.05) and the activity of primary free radical scavengers (superoxide dismutase and catalase) was significantly higher (p<0.05) in Groups I and II. Correspondingly, Group I and II showed significantly higher (p < 0.05) per cent of acrosome intact live spermatozoa and sperm cells with functionally active mitochondria. Collectively, this study showed that the presence of FAA on the sperm membrane is related to greater protection against oxidative stress ensuing improved acrosome intact live-sperm cells with functional mitochondria.

Keywords

Fertility associated antigen Mitochondria Oxidative stress Seminal plasma/sperm membrane proteins.

References

  1. Aebi, H. (1984). Catalase in vitro. Methods Enzymol., 105: 121–126.
  2. Agarwal, A., Virk, G., Ong, C. and Plessis, S.S. (2014). Effect of oxidative stress on male reproduction. World J. Mens Health, 32: 1–17.
  3. Ahmad, M., Ahmad, N., Riaz, A. and Anzar, M. (2015). Sperm survival kinetics in different types of bull semen: progressive motility, plasma membrane integrity, acrosomal status and reactive oxygen species generation. Reprod. Fertil. Dev., 27: 784–793.
  4. Aitken, R.J., Wingate, J.K., De Iuliis, G.N., Koppers, A.J. and McLaughlin, E.A. (2006). Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J. Clin. Endocrinol. Metab., 91: 4154–4163.
  5. Alvarez, J.G. and Storey, B.T. (2005). Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev., 42: 334–346.
  6. Asadpour, R., Alavi–Shoushtari, S., Rezaii, A. and Ansari, A.H.K. (2007). SDS–polyacrylamide gel electrophoresis of buffalo bull’s seminal plasma proteins and their relation with semen freezability. Anim. Reprod. Sci., 102: 308–313.
  7. Baumber, J., Ball, B.A., Gravance, C.G., Medina, V. and Davies-Morel, M.C.G. (2000). The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential and membrane lipid peroxidation. J. Androl., 21: 895–902.
  8. Ball, B.A. (2014). Applied andrology in horses. In: Animal andrology theories and applications [Chenoweth PJ, Lorton SP, editors] London, UK: CPI group 272–273.
  9. Bellin, M.E, Oyarzo, J.N., Hawkins, H.E., Zhang, H., Smith, R.G., Forrest, D.W., Sprott, L.R. and Ax, R.L. (1998). Fertility-associated antigen (FAA) on bull sperm indicates fertility potential. J. Anim. Sci., 76: 2032–2039.
  10. Colagar, A.H., Pouramir, M., Marzony, E.T. and Jorsaraei, S.G.A. (2009). Relationship between seminal malondialdehyde levels and sperm quality in fertile and infertile men. Braz. Arch. Biol. Technol., 52: 1387–1392.
  11. Del-Valle, S., Casao, A., Pérez-Pé, R., Holt, W.V., Cebrián-Pérez, J.A. and Muino-Blanco, T. (2017). Seminal plasma proteins prevent detrimental effects of ram sperm cryopreservation and enhance the protective effect of lecithin. Biochem. Anal. Biochem., 6(2): 319–330.
  12. Garcia-Lopez, N., Ollero, M., Cebrian-Perez, J.A. and Muino-Blanco, T. (1996). Reversion of thermic-shock effect on ram spermatozoa by adsorption of seminal plasma proteins revealed by partition in aqueous two-phase systems. J. Chromatogr. A., 680: 137–143.
  13. Gharagozloo, P. and Aitken, R.J. (2011). The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum. Reprod., 26: 1628–1640.
  14. Guthrie, H.D. and Welch, G.R. (2006). Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J. Anim. Sci., 84: 2089–2100.
  15. Ivanova–Kicheva, M. and Dimov, G. (2011). Influence of selected seminal plasma proteins on mitochondrial integrity and speed parameters of ram sperm stored at low temperature. Biotechnol. Biotechnol. Equip., 4: 2591–2596.
  16. Karunakaran, M. and Devanatha, T.G. (2017). Evaluation of bull semen for fertility–associated protein, in vitro characters and fertility. J. App. Anim. Res., 45(1): 136–144.
  17. Karunakaran, M., Devanathan, T.G., Kulasekar, K., Sridevi, P., Jawahar, T.P., Loganatahsamy, K., Dhali, A. and Selvaraju, S. (2012). Effect of fertility associated protein on oxidative stress of bovine sperm cells. Indian J. Anim. Reprod., 33(1): 43–46.
  18. Kasai, T., Ogawa, K., Mizuno, K., Nagai, S., Uchida, Y., Ohta, S., Fujie, M., Suzuki, K., Hirata, S. and Hoshi, K. (2002). Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian J. Androl., 4: 97–103. 
  19. Krishnan, G., Thangvel, A., Loganathasamy, K., Veerapandian, C., Kumarasamy, P. and Karunakaran, M. (2015). Effect of fertility associated proteins on lipid peroxidation production in Holstein Friesian semen. Indian J. Anim. Sci., 85(11): 1176–1180.
  20. Krishnan, G., Thangvel, A., Loganathasamy, K., Veerapandian, C., Kumarasamy, P. and Karunakaran, M. (2016). The presence of heparin binding proteins and their impact on semen quality of Holstein Friesian bulls. Indian J. Anim. Sci., 86(4): 392–396.
  21. Laemmli, V.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685. 
  22. Lewis, S.E. and Aitken, R.J. (2005). DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res., 322: 33–41.
  23. Li, C., Wang, D. and Zhou, X. (2016). Sperm proteome and reproductive technologies in mammals. Anim. Reprod. Sci., 173: 1–7.
  24. Madesh, M. and Balasubramanian, A.K. (1998). Microtiter plate assay for SOD using MTT reduction by superoxide. Indian J. Biochem. Biophys., 35:184–188.
  25. Mammoto, A., Masumoto, N., Tahara, M., Ikebuchi, Y., Ohmichi, M., Tasaka, K. and Miyake, A. (1996). Reactive oxygen species block sperm egg fusion via oxidation of sperm sulfhydryl proteins in mice. Biol. Reprod., 55: 1063–1068.
  26. Manjunath, P., Lefebvre, J., Jois, P.S., Fan, J. and Wright, M.W. (2009). New nomenclature for mammalian BSP genes. Biol. Reprod., 80: 394–397.
  27. Mann, T. (1954). The Biochemistry of Semen. Methuen and Co Ltd, London. 
  28. McCauley, T., Zhang, H. and Ax, R. (2007). Composition and method to increase mammalian sperm function. Cited patent no: US 20070166694 A1. (http://www.google.com.pg/patents/WO2011023287A1?cl=en)
  29. Morte, M.I., Rodrigues, A.M., Soares, D., Rodrigues, A.S., Gamboa, S. and Ramalho-Santos, J. (2008). The quantification of lipid and protein oxidation in stallion spermatozoa and seminal plasma: seasonal distinctions and correlations with DNA strand breaks, classical seminal parameters and stallion fertility. Anim. Reprod. Sci., 106: 36–47.
  30. Muino-Blanco, T., Perez-Pe, R. and Cebrian-Perez, J.A. (2008). Seminal plasma proteins and sperm resistance to stress. Reprod. Dom. Anim., 43: 18–31.
  31. Nass, S.J, Miller, D.J., Winner, M.A. and Ax, R.L. (1990). Male accessory sex glands produce heparin–binding proteins that bind to cauda epididymal spermatozoa and are testosterone dependent. Mol. Reprod. Dev., 25: 237–246. 
  32. Pande, M., Srivastava, N., Soni, Y.K., Omerdin, Kumar, M., Tyagi, S., Sharma, A. and Kumar, S. (2018). Presence of Fertility-associated antigen on sperm membrane corresponds to greater freezability potential of Frieswal bull semen. Indian J. Anim. Sci., 88(1): 39–45.
  33. Patel, M., Gandotra, V.K., Cheema, R.S., Bansal, A.K. and Kumar, A. (2016). Seminal plasma heparin binding proteins improve semen quality by reducing oxidative stress during cryopreservation of cattle bull semen. Asian-Australas. J. Anim. Sci., 29(9): 1247–1255.
  34. Rodriguez-Martinez, H. (2014). Semen evaluation and handling. In: Animal Andrology Theories and Applications (Chenoweth, P.J., Lorton, S.P., editors) London, UK: CPI group 526–528.
  35. Rueda, F.L., Química, L., Herrera, R.F, Arbeláez, L.F, Garcés, T., Velasquez, H., Peña, M. A. and Cardozo, J.A. (2013). Increase in post–thaw viability by adding seminal plasma proteins to Sanmartinero and Zebu sperm. Rev. Colomb. Cienc. Pec., 26: 98–107.
  36. Sanocka, D. and Kurpisz, M. (2004). Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol., 2:12–19.
  37. Sarýözkan, S., Bucak, M.N., Tuncer, P.B., Ulutaº, P. and Bilgen, A. (2009). The influence of cysteine and taurine on microscopic-    oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology, 58: 134–138.
  38. Siciliano, L., Marciano, V. and Carpino, A. (2008). Prostasome–like vesicles stimulate acrosome reaction of pig spermatozoa. Reprod. Biol. Endocrinol., 6: 1–7.
  39. Silva, P.F and Gadella, B.M. (2006). Detection of damage in mammalian sperm cells. Theriogenology, 65(5): 958–978.
  40. Simoes, R., Feitosa, W.B., Siqueira, A.F., Nichi, M., Paula-Lopes, F.F., Marques, M.G., Peres, M.A., Barnabe, V.H., Visintin, J.A. and Assumpcao, M.E. (2013). Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction, 146: 433–441.
  41. Singh, A.K., Brar, P.S., Cheema, R.S. and Kumar, P. (2017). Prediction of buffalo bull fertility based on sperm motion traits, function tests and expression of heparin binding protein. Indian J. Anim. Sci., 87(5): 573–578.
  42. Sutovsky, P. and Kennedy, C.E. (2013). Biomarker-based nanotechnology for the improvement of reproductive performance in beef and dairy cattle. Indian Biotechnol., 9(1): 24–30.
  43. Voncina, M.S., Golob, B., Ihan, A., Kopitar, A.N., Kolbezen, M. and Zorn, B. (2016). Sperm DNA fragmentation and mitochondrial membrane potential combined are better for predicting natural conception than standard sperm parameters. Fertil. Steril., 105(3): 637–644.
  44. Watson, P.F. (2000). The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci., 60: 481–492. 

Global Footprints