Association of polymorphism at intron 2 of FABP3 Gene with milk production traits in Sahiwal and Karan Fries cattle

DOI: 10.18805/ijar.B-3564    | Article Id: B-3564 | Page : 559-565
Citation :- Association of polymorphism at intron 2 of FABP3 Gene with milk production traits in Sahiwal and Karan Fries cattle.Indian Journal Of Animal Research.2019.(53):559-565
Alok Kumar Yadav, Anupama Mukherjee and Suchit Kumar
Address : Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal-132 001, Haryana, India.
Submitted Date : 13-01-2018
Accepted Date : 23-03-2018


PCR-RFLP analysis of PCR products were carried out using Aci I / SSi I for 100 Sahiwal and 115 Karan Fries cattle. In Sahiwal cattle and Karan Fries cattle, 438bp has three genotypes AA (438), AB (438+299+139 bp) and BB (299+139 bp). In Sahiwal cattle these genotypes are highly significant for FL305DPY but in Karan Fries cattle these genotypes are highly significant for FL305DMY, FLTMY, FL305DFY and FL305DPY. In Sahiwal cattle, mean ± SE of AA genotype for FL305DMY, FLTMY, FL305DFY, FL305DSNFY, FL305DPY were 1809.90 ± 15.7 kg, 2029.4 ± 15.6 kg, 99.90 ± 0.66 kg, 154.87 ± 0.17 kg and 44.81 ± 0.06 kg, respectively and for AB genotype were 1800.76 ± 9.48 kg, 1993.99 ± 9.42 kg, 100.54 ± 0.39 kg, 154.79 ± 0.10 kg, 43.99 ± 0.04 kg, respectively and for BB genotype were 1830.0 ± 14.10 kg, 2032.80 ± 14.0 kg, 100.24 ± 0.59 kg, 155.11 ± 0.15 kg, 42.98 ± 0.05 kg, respectively. Heterozygous AB genotype was found to be superior for, FL305DFY trait. AA genotype was significantly superior for FL305DPY traits whereas BB genotype was found to be superior for FL305DMY, FLTMY, FL305DSNFY. In Karan Fries cattle, the mean ± SE of AA genotype for FL305DMY, FLTMY, FL305DFY, FL305DSNFY, FL305DPY were 3442.17 ± 8.39 kg, 4461.93 ± 8.39 kg, 124.96 ± 7.20 kg, 277.35 ± 0.08 kg and 112.51 ± 0.08 kg, respectively and for AB genotype were 3572.69 ± 5.93 kg, 4592.45 ± 5.93 kg, 140.17 ± 5.09 kg, 278.60 ± 0.06 kg, 113.91 ± 0.05 kg, respectively and for BB genotypes were 3502.41 ± 9.19 kg, 4522.17 ± 9.19 kg, 136.91 ± 7.89 kg, 277.93 ± 0.09 kg, 113.19 ± 0.08 kg, respectively. 


FABP3 gene Karan Fries cattle Milk Constituents traits Sahiwal.


  1. Binas, B., Spitzer, E., Zschiesche, W., Erdmann, B., Kurtz, A., Muller, T., Niemann, C., Blenau, W. and Grosse, R. (1992). Hormonal induction of functional differentiation and mammary derived growth inhibitor expression in cultured mouse mammary gland explants: In Vitro. Cell Dev Biol., 28A, 625-634.
  2. German, J. B. and Dillard, C. J. (2006). Composition, structure and absorption of milk lipids: a source of energy, fat soluble nutrients and bioactive molecule: Critical Reviews. Food Sci. Nutr., 46(1), 57-92.
  3. Jensen, R.G. (2002).The composition of bovine milk lipids. J. Dairy Sci., 85(2), 295-350.
  4. Livestock Census, (2012). 19th All India Livestock Census.Department of Animal husbandry, Dairying and Fisheries.Ministry of agriculture.Government of India.
  5. Meyer, K. (2010). WOMBAT—A Tool for Mixed Model Analyses in Quantitative Genetics by Restricted Maximum Likelihood (REML). J. Zhejiang Univ. Sci., 8(11), 815-821. 
  6. Nafikov, R. A., Schoonmaker, J. P., Kathleen, T. K., Kristin, N., Dorian, J., Kenneth, J. K., Jennifer, M. B., James, M. R., Diane, E. S. and Donald C. B. (2013). Effects of polymorphisms in FABP3, FABP4, and SLC27A6 genes on bovine milk fatty acid composition. J. Dairy Sci., 96(9): 6007-21.
  7. Sambrook, J. and Russell, D. W. (2001). Molecular cloning.A laboratory manual 3rd Edn. Cold Pring Harbor Laboratory Press, New York.
  8. Schaefer, E. J. (2002). Lipoproteins, nutrition, and heart disease. Am. J. ClinNutr., 75(2), 191-212.
  9. Shimano, H., Horton, J.D., Hammer, R.E., Shimomura, I., Brown, M.S., Goldstein, J.L. (1996). Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J. Clin. Invest., 98(7), 1575- 1584.
  10. Soyeurt, H., Dardenne, P., Gillon, A., Croquet, C., Vanderick, S., Mayeres, P., Bertozzi, C., Gengler, N. (2006).Variation in fatty acid contents of milk and milk fat within and across breeds. J. Dairy Sci., 89(12), 4858-4865.
  11. Stoop, W.M., Van-Arendonk, J.A., Heck, J.M., Van-Valenberg, H.J. and Bovenhuis, H. (2008). Genetic parameters for major milk fatty acids and milk production traits of Dutch Holstein-Friesians. J. Dairy Sci., 91(1), 385-394.
  12. Yang, T., Espenshade, P.J., Wright, M.E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J. L. and Brown, M.S. (2002). Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell., 110(4), 489-500.
  13. Yardibi, H., Gursel, F. E., Ates, A., Akýs, I., Hosturk, G.T. and Oztabak, K. (2013). BTN1A1, FABP3 and TG genes polymorphism in East Anatolian red cattle breed and South Anatolian red cattle breed. Afr. J. Biotechnol., 12(20), 2802-2807.

Global Footprints