Nanoparticle based Brucella melitensis vaccine induced oxidative stress acts in synergism to immune response 

DOI: 10.18805/ijar.B-3548    | Article Id: B-3548 | Page : 648-654
Citation :- Nanoparticle based Brucella melitensis vaccine induced oxidative stress acts in synergism to immune response.Indian Journal Of Animal Research.2019.(53):648-654
Amit Kumar, V. K. Gupta, Anu Rahal, Rajesh Mandil, A.K.Verma and S. K. Yadav rahalanu72@gmail.com
Address : Department of Veterinary Microbiology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura-281 001, Uttar Pradesh, India.
Submitted Date : 23-12-2017
Accepted Date : 28-03-2018

Abstract

Brucella melitensis, mainly responsible for human brucellosis, is considered as biological warfare. Being intracellular in nature Brucella induces oxidative stress due to bacterial invasion in organs like spleen and lymph nodes. The present study was aimed to evaluate the specific oxidative stress responses in erythrocytes and tissues induced by intranasal inoculation of killed Brucella whole cell protein antigen coupled with sodium acrylate nanoparticle adjuvant. Glutathione mediated nonenzymic antioxidant defense system and catalase have been observed to play a critical role in intracellular antioxidant defenses in vaccinated animals and also in maintaining an excellent milieu to induce an active immune potential. The antioxidant defenses in erythrocytes, liver, kidneys, lungs and spleen of vaccinated mice also maintained excellent redox homeostasis required for quality and effective protection without inflammatory pathophysiology.

Keywords

Brucella melitensis Immune response Nano particle Oxidative stress.

References

  1. Al-Khafaji, W.S. and Al-Farwachi, M.I. (2012). Antioxidant status in pregnant ewes vaccinated with Rev 1 against brucellosis. Iraqi Journal of Veterinary Sciences, 26: 15-19.
  2. Allison, A. C. and Byars, N. E. (1991). Immunological adjuvants: desirable properties and side-effects. Molecular Immunology, 28: 279–284.
  3. Baldi, P. C. and Giambartolomei, G. H. (2013). Immunopathology of Brucella infection. Recent Patient Anti infection Drug Discovery, 8: 18-26.
  4. Bennett, S. J. and Griffiths, H.R. (2013). Regulation of T-Cell Functions by Oxidative Stress. In:, Studies on Arthritis and Joint Disorders, [(M.J. Alcaraz et al. (eds.) Oxidative Stress in Applied Basic Research and Clinical Practice, Springer, LLC, pages 33- 48.
  5. Bergmeyer, H.U. (1983). U.V method of catalase assay. In: Methods of Enzymetic Analysis. Vol. III 3rd ed. Weinheim, DecrfieldBeah, Florida, Basal, 273.
  6. Celli, J., de Chastellier, C., Franchini, D. M., Pizarro-Cerda, J., Moreno, E., Gorvel, J. P. (2003). Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. Journal of Experimental Medicine,198: 545–556.
  7. Cemerski, S., van Meerwijk, J. P., Romagnoli, P. (2003). Oxidative stress-induced T lymphocyte hyporesponsiveness is caused by structural modification rather than proteasomal degradation of crucial TCR signalling molecules. European Journal of Immunology,33: 2178–2185.
  8. Descotes, J., Guillermin, A., Evreux, J.C. (1988). Influence of tetanus and typhoid vaccines on hepatic drug metabolism. Pharmacology, 36:134-139.
  9. Habig, W.H., Pabst, M.J., Jakoby, W.B. (1974). Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biology and Chemistry, 249: 7130–7139.
  10. Hadzic, T., Li, L., Cheng, N., Walsh, S.A., Spitz, D.R. Knudson, C.M. (2005). The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. Journal of Immunology, 175: 7965–7972.
  11. Jain, R., Dey, B., Khera, A., Srivastav, P., Gupta, U.D., Katoch, V.M., Ramanathan, V.D., Tyagi, A.K. (2011). Over-expression of SOD obliterates the protective effect of BCG against tuberculosis by modulating innate and adaptive immune responses. Vaccine, 29:8118-8125.
  12. Jiang, X., Leonard, B., Benson, R., Baldwin, C.L. (1993). Macrophage control of Brucella abortus: role of reactive oxygen intermediates and nitric oxide. Cellular Immunology, 151:309-319.
  13. King, M. R., Ismail, A. S., Davis, L.S. Karp, D.R.(2006) Oxidative stress promotes polarization of human T cell differentiation toward a T helper 2 phenotype. Journal of Immunology, 176: 2765–2772.
  14. Kumar, A., Verma, A.K., Rahal, A., Panwar, P.K., Dhama, K. (2013). Recent trends in development of adjuvant of vaccine. Trends in Medical Research, 8: 32-35.
  15. Kumar, A., Gupta, V.K., Verma, A.K., Yadav, S.K., Rahal, A. (2016). Vaccines for caprine brucellosis: status and prospective. International Journal of Vaccines and Vaccination,2: 00030.
  16. Kumar, A., Gupta, V.K., Verma, A.K., Mandil, R., Rahal, A., Yadav, S.K. (2017). Lipid Peroxidation and antioxidant system in erythrocytes of brucella vaccinated and challenged goats. International Journal of Vaccines and Vaccination, 4: 00092.
  17. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biology and Chemistry, 193: 265-275.
  18. Madesh, M. and Balasubramanian, K.A. (1998). Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian Journal of Biochemistry and Biophysics, 35: 184-188.
  19. Minas, A. (2006). Control and eradication of brucellosis in small ruminants. Small Ruminant Research. 62: 101-107.
  20. Office International des Epizooties (OIE). (2010). Manual of Standards for Diagnostic Tests and Vaccines 3rd Ed., Office International des Epizooties, Paris, France. pp: 251.
  21. Pacitti, D., Wang, T., Page, M.M., Martin, S.A., Sweetman, J., Feldmann, J., Secombes, C.J. (2013). Characterization of cytosolic glutathione peroxidase and phospholipid- hydroperoxide glutathione peroxidase genes in rainbow trout (Oncorhynchus mykiss) and their modulation by in vitro selenium exposure. Aquatic Toxicology, 130: 97–111.
  22. Pizarro-Cerda, J., Moreno, E., Sanguedolce, V., Mege, J.L, Gorvel, J.P. (1998). Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infection and Immunity, 66: 2387–2392.
  23. Prins, H.K. and Loos, J.A. (1969). Glutathione. In: Yunis JG (ed) Biochemical Methods in Red Cell Genetics. Academic Press, New York, pp 127–129.
  24. Rahal, A., Ahmad, A.H., Prakash, A., Mandil, R., Kumar, A.T. (2014). Environmental attributes to respiratory diseases of small ruminants. Veterinary Medicine International,. 2014, Article ID 853627.
  25. Rehman, S.U. (1984). Lead induced regional lipid peroxidation in brain. Toxicology Letters, 21: 333-337.
  26. Sedlak, J. and Lindsay, R.H. (1968). Estimation of total protein bound NPSH groups in tissues with Ellaman’s reagent. Analytical Biochemistry, 25: 192-205.
  27. Snedecor, G.W. and Cochran, W.G. (1989). Statistical Methods. 7th edition. Oxford and IBH Publishing Company, New Delhi, India.
  28. Sorg, D.A. and Buckner, B. (1964). A simple method of obtaining venous blood from small laboratory animals. Proceedings of the Society for Experimental Biology and Medicine, 115: 1131-1132.
  29. Ural, M.S. (2013). Chlorpyrifos-induced changes in oxidant/antioxidant status and haematological parameters of Cyprinuscarpio: ameliorative effect of lycopene. Chemosphere, 90:2059–2064 
  30. Yagi. K. (1978). Lipid peroxides and human diseases. Chemistry and Physiology of Lipids, 45: 337–351.
  31. Yan, H. and Harding, J.J. (1997) Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Journal of Biochemistry, 328: 599–605. 

Global Footprints