Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 53 issue 4 (april 2019) : 445-450

Ubiquinol supplementation on energy metabolism and oxidative stress in broiler chicken

M. Gopi, M.R. Purushothaman, R. Dhinesh Kumar, G. Prabakar, D. Chandrasekaran
1ICAR-Central Avian Research Institute, Izatnagar-243 122, Uttar Pradesh, India.
Cite article:- Gopi M., Purushothaman M.R., Kumar Dhinesh R., Prabakar G., Chandrasekaran D. (2018). Ubiquinol supplementation on energy metabolism and oxidative stress in broiler chicken. Indian Journal of Animal Research. 53(4): 445-450. doi: 10.18805/ijar.B-3523.
Study was carried out to assess supplemental effects of dietary reduced ubiquinol (rCoQ10) on lipid profile and serum antioxidant activity in broiler chicks fed diets with three energy levels. 270 broiler chicks divided into nine groups (3 energy levels x 3 levels of rCoQ10) with three replicates. Birds were fed with basal energy (BE), low energy (BE-100 (kcal)) and high energy (BE+100 ( feed) and rCoQ10 at 0, 20 and 40ppm. Broiler chicks were distributed in completely randomized design and reared for 42d and at end of study, serum and muscle samples were collected for antioxidant activities, lipid contents. The activity of superoxide dismutase, glutathione peroxidase, reduced glutathione, vitamin E were increased and serum malonaldehyde, total, LDL-cholesterol as well as muscle cholesterol were reduced by intake of rCoQ10. The consumption of rCoQ10 improved muscle oxidative stability than the control. Ubiquinol at 20ppm favourably altered lipid profile with reduced lipid peroxidation and improved serum antioxidants activities.
  1. Baisaeng, N., Peters, D., Prost, M., Durand, P., Müller, R.H., Keck, C.M. (2016). In vitro antioxidant activity of smaller size of coenzyme Q10-enriched shell of ultra-small nanostructured lipid carriers. Walailak J. Sci. Tech. 13: 875–92. 
  2. Bhagavan, H.N., Chopra, R.K. (2006). Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radical Res. 40(Suppl. 5): 445-53. 
  3. Bhagavan, H.N., Chopra, R.K. (2007). Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion, 7S: S78–88. 
  4. Bucolo, G., David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19: 476-482.
  5. Bulaj, G., Kortemme, T., Goldenberg, D.P. (1998). Ionization: Reactivity relationships for cysteine thiols in polypeptides. Biochem. 37: 8965–8972. 
  6. Cicero, A.F.G., Derosa, G., Miconi, A., Laghi, L., Nascetti, S., Gaddi, A. (2005). Possible role of ubiquinone in the treatment of massive hypertriglyceridemia resistant to PUFA and fibrates. Biomed. Pharmacother. 59: 312-317.
  7. Constantinescu, A., Maguire, J.J., Packer, L. (1994). Interactions between ubiquinones and vitamins in membranes and cells. Mol. Aspects Med. 15: s57-s65.
  8. Conti, V., Izzo, V., Corbi, G., Russomanno, G., Manzo, V., De Lise, F., Di Donato, A., Filippelli, A. (2016). Antioxidant supplementation in the treatment of aging-associated diseases. Front Pharm. 7: 24.
  9. Ellman, G.L. (1959). Determination of sulfhydryl group. Arch. Biochem. Biophy. 82: 70-74. 
  10. Fabianek, J., DeFilippi, J., Rickards, T., Herp, A. (1968). Micromethod for tocopherol determination in blood serum. Clin. Chem. 14(Suppl 5): 456-462. 
  11. Folch, J., Lees, M., Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-507.
  12. Friedewald, W.T., Levy, R.I., Fredrickson, R.S. (1972). Estimation of the concentration of low density lipoprotein cholesterol in plasma, without the use of preparative centrifuge. Clin. Chem. 18: 499-502.
  13. Gopi, M., Purushothaman, M.R., Chandrasekaran, D. (2014). Effect of dietary coenzyme Q10 supplementation on the growth rate, carcass characters and cost effectiveness of broiler fed with three energy levels. SpringerPlus, 3: 518. 
  14. Gopi, M, Purushothaman, M.R., Chandrasekaran, D. (2015). Influence of coenzyme Q10 supplementation in high energy broiler diets on production performance, hematological and slaughter parameters under higher environmental temperature. Asian J. Anim. Vet. Adv.10: 311-322.
  15. Gopi, M., Purushothaman, M.R., Chandrasekaran, D. (2016). Effect of coenzyme Q10 supplementation on serum protein, mineral status, blood picture and immune status in broilers. Indian J. Exp. Biol. 54: 808-815.
  16. Honda, K., Kamisoyama, H., Motoori, T., Saneyasu, T, Hasegawa, S. (2010). Effect of dietary coenzyme Q10 on cholesterol metabolism in growing chickens. Japan Poult. Sci. Assoc. 47(Suppl 1): 41-47. 
  17. Ioana, V.S., Lasio, L., Uivarosan, D. (2009). Stimulation of biosynthesis of coenzyme Q10 by Sacharomyces cerevisiae under the influence of vitamin B1. Analele Universitatii Din Oradea. 2: 693-700.
  18. Kamisoyama, H., Honda, K., Kitaguchi, K., Hasegawa, S. (2010). Transfer of dietary coenzyme Q 10 into the egg yolk of laying hens. J. Poult. Sci. 47: 28-33. 
  19. Karamouz, H. (2009). Effect of residual oil of food manufactories on cholesterol and malondialdehyde in muscle of male broiler. J. Anim. Vet. Adv. 8: 2045-2048.
  20. Krizman, P.J., Prosek, M., Smidovnik, A., Wondra, A.G., Glaser, R., Zelenko, B., Volk, M. (2012). Products with increased content of CoQ10 prepared from chickens fed with supplemental CoQ10. Trends in Vital Food and control engineering published by In Tech Janeza Trdine 9, 51000 Rijeka, Croatia. Ch.9: 165-86.
  21. Lakomkin, V.L., Konovalova, G.G., Kalenikova, E.I., Zabbarova, I.V., Kaminnyi, A.I., Tikhaze, A.K., Lankin, V.Z., Ruuge, E.K., Kapelko, V.I. (2005). Changes in antioxidant status of myocardium during oxidative stress under the influence of coenzyme Q. Biochem. 70: 79-84.
  22. Marklund, S.L., Marklund, G. (1974). Involvement of superoxide anion radical in the auto-oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469 – 474.
  23. Modi, K., Santani, D.D., Goyal, R.K., Bhatt, P.A. (2006). Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biol. Trace Elem. Res. 109: 25-33.
  24. Raju, M.V., Sunder, G.S., Chawak, M., Rao, S.V.R., Sadagopan, V.V. (2004). Response of naked neck (Nana) and normal (nana) broiler chickens to dietary energy level in a subtropical climate. Br. Poult. Sci. 45: 186-193.
  25. Rokade, J.J., Bhanja, S.K., Shinde, A.S., Sajjad, Darshana, B.B., Mandal, A.B. (2017). Evaluation of aspirin (ASA) in broiler chicken during hot dry summer using zoo technical, molecular and physio-biochemical tools. Indian J. Anim. Res. 51 (1): 97-104.
  26. Rotruk, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., Hekstra, W.G. (1973). Selenium, biochemical role as a component of glutathione peroxidase purification and assay. Sci. 179: 588-590. 
  27. Sarkar, P., Ghosh, S., Batabyal, S., Chatterjee, S. (2013). Biochemical stress responses of broiler chickens during transport. Indian J. Anim. Res., 47 (1): 29 - 34
  28. Salih, A.M., Smith, D.M., Price, J.F., Dawson, L.E. (1987). Modified extraction: 2-Thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 66: 1483-1488. 
  29. Schmelzer, C., Niklowitz, P., Okun, J.G., Haas, D., Menke, T., Doring, F. (2011). Ubiquinol induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans. IUBMB Life. 63(1): 42-48.
  30. Seigler, L., Wu, W.T. (1981). Separation of serum high-density lipoprotein for cholesterol determination: ultracentrifugation vs precipitation with sodium phosphotungstate and magnesium chloride. Clin. Chem. 27: 838-841. 
  31. Snedecor, G.W., Cochran, W.G. (1989). Statistical Methods. 8th edn, Iowa State University Press, Ames, USA. Iowa - 50010.Tohala, 
  32. S.H. (2010). The relationship between blood lipid profile and performance of broilers fed two types of finisher diets. Iraqi J. Vet. Sci. 24: 87-91.
  33. Wang, S.Z., Hu, X.X., Wang, Z.P., Li, X.C., Wang, Q.G., Wang, Y.X., Tang, Z.Q., Li, H. (2012). Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7. Genet. Mol. Res. 11: 956-65. 
  34. Wybenga, D.R., Pileggi, P.H., Dirstine, J, Giorgio, J.D. (1970). Direct manual determination of serum total cholesterol with a single stable reagent. Clin. Chem. 16: 980-984. 
  35. Yunsheng, M., David, E.C., Barbara, C.O., Wenjun, L., Katherine, L., Andrea, R.H. (2006). Association between carbohydrate intake and serum lipids. J. Am. Coll. Nutr. 25(2): 155–    163.
  36. Zhu, Z., Lamont, S.J., Lee, W.R., Abast, B. (2015). RNA-Seq analysis of abdominal fat reveals differences between modern commercial broiler chickens with high and low feed efficiencies. PLoS ONE 10(8): e0135810. 

Editorial Board

View all (0)