Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 53 issue 2 (february 2019) : 250-254

Occurrence of beta-lactamase producing Escherichia coli in healthy and diarrhoeic dogs in Andhra Pradesh, India

N. Mohammad Sharif, B. Sreedevi, R.K. Chaitanya, Ch. Srilatha
1Department of Veterinary Microbiology, College of Veterinary Science, Sri Venkateswara Veterinary University (SVVU), Tirupati-517 502, Andhra Pradesh, India.
Cite article:- Sharif Mohammad N., Sreedevi B., Chaitanya R.K., Srilatha Ch. (2018). Occurrence of beta-lactamase producing Escherichia coli in healthy and diarrhoeic dogs in Andhra Pradesh, India. Indian Journal of Animal Research. 53(2): 250-254. doi: 10.18805/ijar.B-3495.
The present study was carried out to characterize beta-lactam resistance in Escherichia coli isolated from healthy and diarrhoeic dogs. A total of 93 E. coli were isolated from the rectal swabs of 136 dogs (60/92 of healthy dogs and 33/44 of diarrhoeic dogs). Predominant serotypes detected include rough (19 isolates), O141 (5), O9 (2), O126 (2), O128 (2), O15, O20, O35, O49, O63, O85, O101, O116, O117, O118, O119 (1 isolate each) and the rest of 52 isolates were untypable (UT). Disc diffusion method revealed resistance to cefotaxime (41.9%), ceftriaxone (34.4%), ceftazidime (30.1%) and aztreonam (18.2%). Overall frequency of extended spectrum beta-lactamase (ESBL) phenotype was found to be 29% (27/93). Beta-lactamase genes detected include blaAmpC (86.0%), blaSHV (30.1%), blaCTX-M group-1 (19.3%), blaTEM (17.2%), blaOXA (13.9%) and blaCTX-M group-2 (7.5%). The study revealed resistance to commonly prescribed beta-lactams, with ESBL phenotype in E. coli of canine origin in Andhra Pradesh, India. 
  1. Baede, V.O., Wagenaar, J.A., Broens, E.M., Duim, B., Dohmen, W. and Nijsse, R., et al. (2015). Longitudinal study of extended-   spectrum-â-lactamase-and AmpC-producing Enterobacteriaceae in household dogs. Antimicrob. Agents Chemother. 59(6): 3117-3124.
  2. Bauer, A.W., Kirby, W.M., Sherris, J.C. and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4): 493.
  3. Bush, K. and Jacoby, G.A. (2010). Updated functional classification of â-lactamases. Antimicrob. Agents Chemother. 54(3): 969-976.
  4. Carattoli, A., Lovari, S., Franco, A., Cordaro, G., Di Matteo, P. and Battisti, A. (2005). Extended-spectrum â-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob. Agents Chemother. 49(2): 833-835.
  5. CLSI. Clinical and Laboratory Standards Institute. (2014). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-    fourth Informational Supplement. M100-S24. Wayne, PA, USA.
  6. Costa, D., Poeta, P., Briñas, L., Sáenz, Y., Rodrigues, J. and Torres, C. (2004). Detection of CTX-M-1 and TEM-52 â-lactamases in Escherichia coli strains from healthy pets in Portugal. J. Antimicrob. Chemother. 54(5): 960-961.
  7. Dallenne, C., Da Costa, A., Decre, D., Favier, C. and Arlet, G. (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important â-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65(3): 490-495.
  8. Drieux, L., Brossier, F., Sougakoff, W. and Jarlier, V. (2008). Phenotypic detection of extended spectrum â lactamase production in Enterobacteriaceae: review and bench guide. Clin. Microbiol. Infect. 14(1): 90-103.
  9. Guardabassi, L., Houser, G.A., Frank, L.A. and Papich, M.G. (2008). Guidelines for antimicrobial use in dogs and cats. Guide to antimicrobial use in animals. Oxford: Blackwell Publishing Ltd. pp.183-206.
  10. Ho, P.L., Chow, K.H., Lai, E.L., Lo, W.U., Yeung, M.K., Chan, J., Chan, P.Y. and Yuen, K.Y. (2011). Extensive dissemination of CTX-    M-producing Escherichia coli with multidrug resistance to ‘critically important’antibiotics among food animals in Hong Kong, 2008–10. J. Antimicrob. Chemother. 66(4): 765-768.
  11. Hordijk, J., Schoormans, A., Kwakernaak, M., Duim, B., Broens, E. and Dierikx, C., et al. (2013). High prevalence of fecal carriage of extended spectrum â-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol. 4: 242.
  12. O’Keefe, A., Hutton, T.A., Schifferli, D.M. and Rankin, S.C. (2010). First detection of CTX-M and SHV extended-spectrum â-    lactamases in Escherichia coli urinary tract isolates from dogs and cats in the United States. Antimicrob. Agents Chemother. 54(8): 3489-3492.
  13. Sallem, R.B., Gharsa, H., Slama, K.B., Rojo-Bezares, B., Estepa, V. and Porres-Osante, N., (2013). First detection of CTX-M-1, CMY-2, and QnrB19 resistance mechanisms in fecal Escherichia coli isolates from healthy pets in Tunisia. Vector Borne Zoonotic Dis. 13(2): 98-102.
  14. Sanchez, S., Stevenson, M.M., Hudson, C.R., Maier, M., Buffington, T., Dam, Q. and Maurer, J.J. (2002). Characterization of multidrug-    resistant Escherichia coli isolates associated with nosocomial infections in dogs. J. Clin. Microbiol. 40(10): 3586-3595.
  15. Schaufler, K., Bethe, A., Lübke-Becker, A., Ewers, C., Kohn, B., Wieler, L.H. and Günther, S. (2015). Putative connection between zoonotic multiresistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect. Ecol. Epidemiol. 5(1): 25334.
  16. Shaheen, B.W., Nayak, R., Foley, S.L., Kweon, O., Deck, J., Park, M., Rafii, F. and Boothe, D.M. (2011). Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob. Agents Chemother. 55(12): 5666-5675.
  17. Shahid, M., Sobia, F., Singh, A. and Khan, H.M. (2012). Concurrent occurrence of blaampC families and blaCTX-M genogroups and association with mobile genetic elements ISEcp1, IS26, ISCR1, and sul1-type class 1 integrons in Escherichia coli and Klebsiella pneumoniae isolates originating from India. J. Clin. Microbiol. 50(5): 1779-1782.
  18. Sneath, P.H.A., and Holt, J.G. (2001). Bergey’s Manual of Systematic Bacteriology, 2nd ed. VOl 1. A Waverly Company, Williams and Wilkins, Springer-Verlag, NewYork, USA.
  19. Sun, Y., Zeng, Z., Chen, S., Ma, J., He, L., Liu, Y., Deng, Y., Lei, T., Zhao, J. and Liu, J.H. (2010). High prevalence of blaCTX M extended spectrum â lactamase genes in Escherichia coli isolates from pets and emergence of CTX M 64 in China. Clin. Microbiol. Infect. 16(9): 1475-1481.
  20. Wani, S. A., Samanta, I., Bhat, M. A. and Nishikawa, Y. (2004). Investigation of shiga toxin producing Escherichia coli in avian species in India. Lett. Appl. Microbiol. 39: 389-394. 

Editorial Board

View all (0)