Molecular characterization and genetic variability of Alpha Casein gene, CSN1S1 in Bikaneri camel (Camelus dromedarius) milk

DOI: 10.18805/ijar.B-3468    | Article Id: B-3468 | Page : 67-70
Citation :- Molecular characterization and genetic variability of Alpha Casein gene, CSN1S1 in Bikaneri camel (Camelus dromedarius) milk.Indian Journal Of Animal Research.2019.(53):67-70
Karan Veer Singh, S. Jayakumar, S.P. Dixit and Z.S. Malik
Address : National Bureau of Animal Genetic Resources, GT Road Bye Pass, Karnal-132 001, Haryana, India
Submitted Date : 21-07-2017
Accepted Date : 16-08-2017


Camel milk is an important protein source for the nomadic communities living in the arid lands of the world, In recent years there has been an increase in consumption of non-bovine milk as an alternative protein source for humans. Camel milk seems to be containing larger amount of total proteins, such as lactoferrin and immunoglobulins as compared to the cow milk, which may be responsible for the better antimicrobial properties. The casein fraction of milk proteins consists of four caseins, namely as1-casein, as2-casein, b-casein, and k-casein. Casein genetic polymorphisms are important due to their effects on quantitative traits and technological properties of milk. This work was designed to study occurrence of polymorphism of a-casein in native Bikaneri camel (Camelus dromedarius) raw milk sample and to characterize these variants on molecular level.


Alpha- casein Casein gene polymorphism Camel milk production traits Camelus dromedarius.


  1. Boutinaud, M., Rulquin, H., Keisler, D. H., Djiane, J., and Jammes, H. (2002). Use of somatic cells from goat milk for dynamic studies of gene expression in the mammary gland. Journal of Animal Science, 80: 1258-1269.
  2. Cui P., Ji R., Ding F., Qi D., Gao H. and Meng H. (2007). A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of camelidae. BMC Genomics. 8: 241-245.
  3. El Agamy, E. I. (2006). Camel milk. In Y.W. Park, and F.W. Haenlein (Eds.), Handbook of Non-bovine Mammals Blackwell Publisher. Iowa, NJ, USA: (pp. 297-344).
  4. Ereifej, K. I., Alu’datt, M. H., AlKhalidy, H. A., Alli, I., and Rababah, T. (2011). Comparison and characterisation of fat and protein composition for camel milk from eight Jordanian locations. Food Chemistry, 127: 282-289.
  5. Erhardt, Georg., Shuiep, El., Lisson, Maria., Weimann, Christina., Wang, Zhaoxin., El Zubeir, Ibtisam., Pauciullo, Alfredo. (2016). Alpha S1-casein polymorphisms in camel (Camelus dromedarius) and descriptions of biological active peptides and allergenic epitopes. Tropical Animal Health and Production, 48: 879-887. 9p.
  6. Farah, Z. (1993). Composition and characteristics of camel milk. J. Dairy. Res. 60: 603-626.
  7. Ferranti, P., Chianese, L., Malorni, A., Migliaccio, F., Stingo, V., & Addeo, F. (1998). Copresence of deleted protein species generates structural heterogeneity of ovine as1-casein. Journal of Agricultural and Food Chemistry, 46, 411-416.
  8. Ferranti, P., Malorni, A., Nitti, G., Laezza, P., Pizzano, R., Chianese, L. (1995). Primary structure of ovine ás1-caseins: localization of phosphorylation sites and characterization of genetic variants A, C and D. J Dairy Res.;62: 281–96.
  9. Frajman, P., and Dovc, P. (2004) Milk production in the post-genomic era. Acta agriculturae slovenica, 84: 109-119.
  10. Giambra, I.J., Zubeir, E.l., and Erhardt, G. (2013). Biochemical and molecular characterization of polymorphisms of ás1-casein in Sudanese camel (Camelus dromedarius) milk. Int. Dairy J. 28: 88-93.
  11. Ikonen, T., Ojala M., and Syväoja, E.L. (2008). Effects of composite casein and beta-lactoglobulin genotypes on renneting properties and composition of bovine milk by assuming an animal model. J. Dairy Sci. 71: 188-195.
  12. Kappeler, S., Farah, Z., and Puhan, Z. (1998). Sequence analysis of Camelus dromedaries milk caseins. Journal of Dairy Research, 65: 209-222.
  13. Kappeler, S., Farah, Z., and Puhan, Z. (1999). Alternative splicing of lactophorin mRNA from lactating mammary gland of the camel (Camelus dromedarius). Journal of Dairy Science, 82: 2084-2093.
  14. Konuspayeva, G., Faye, B., and Loiseau, G. (2009). The composition of camel milk: a meta-analysis of the literature data. Journal of Food Composition and Analysis, 22: 95-101.
  15. Leroux, C., Mazure, N., Martin, P., (1992). Mutations away from splice site recognition sequences might cis-modulate alternative splicing of goat as1-casein transcripts. Structural organization of the relevant gene. J Biol Chem.; 267: 6147–57.
  16. Martin, P., Ferranti, P., Leroux, C., and Addeo, F. (2003). Non-bovine caseins: quantitative variability and molecular diversity. In [P. F. Fox, & O. L. H. McSweeney (Eds.], Advanced dairy chemistry. Proteins, Vol. I (pp. 277e317). New York, NY, USA: Kluwer Academic/Plenum Publisher.
  17. Medrano, J.F., and Cordova, E.A. (1990). Genotyping of bovine kappa-casein loci following DNA sequence amplification. Biotechnology. 8: 144-146.
  18. Mohr, U., Koczan, D., Linder, D., Hobom, G., and Erhardt, G. (1994). A single point mutation results in A allele-specific exon skipping in the bovine alpha s1-casein mRNA. Gene.;143:187–92
  19. Nikkah, A. (2011a). Equidae, camel, and yak milks as functional foods: a review. Journal of Nutrition and Food Sciences, 1: 100-116.
  20. Nikkah, A. (2011b). Science of camel and yak milks: human nutrition and health perspectives. Food and Nutrition Sciences, 2: 667-673.
  21. Pauciullo, A., Shuiep, E., Cosenza, G., Ramunno, L. and Erhardt, G. (2012). Molecular characterization and genetic variability at ê-casein gene (CSN3) in camels. Gene. 15: 22-30.
  22. Rachagani, S., and Gupta, I.D., (2008). Bovine kappa-casein gene polymorphism and its association with milk production traits. Genet. Mol. Biol. 13: 893-897.
  23. Ramunno, L., Cosenza, G., Rando, A., Pauciullo, A., Illario, R., Gallo, D., (2005). Comparative analysis of gene sequence of goat CSN1S1 F and N alleles and characterization of CSN1S1 transcript variants in mammary gland. Gene.; 345:289–299.
  24. Rozen, S., Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132:365-86.
  25. Shamsia (2009). Nutritional and therapeutic properties of camel and human milks. International Journal of Genetics and Molecular Biology,1:52:58.
  26. Shashikanth, P.B., (1999). Study on DNA polymorphism in cattle and buffalo. Ph.D. Thesis, NDRI Deemed University, Karnal, India.
  27. Shuiep E. S., Giambra I. J., El Zubeir I.E. M., Erhardt G. (2013). Biochemical and molecular characterization of polymorphisms of ás1-    casein in Sudanese camel (Camelus dromedarius) milk. International Dairy Journal 28 : 88-93.
  28. Sushma Prasad, Sharique A. Ali1, P. Banerjee, Jyoti Joshi, Upasna Sharma and R. K. Vijh (2014).Identification of SNPs and their validation in camel (Camelus bactrianus and Camelus dromedarius). Journal of Agriculture and Veterinary Science 7: 2 (2)65-70. 
  29. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731–2739. 
  30. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.
  31. Yeh, F.C., Yang, R.C., Boyle, T., (1999). POPGENE 32. Version 1.31. Population genetics software. Available from: http://www.ualberta .ca/~fyeh/fyeh/. 

Global Footprints