Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 52 issue 11 (november 2018) : 1649-1653

Occurrence of Arcobacter species in animal faeces, foods of animal origin and humans in Andhra Pradesh, India

M. Soma Sekhar, S.R. Tumati, B.K. Chinnam, V.S. Kothapalli, N. Mohammad Sharif
1Department of Veterinary Public Health and Epidemiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University (SVVU), Tirupati – 517 502, India.
Cite article:- Sekhar Soma M., Tumati S.R., Chinnam B.K., Kothapalli V.S., Sharif Mohammad N. (2017). Occurrence of Arcobacter species in animal faeces, foods of animal origin and humans in Andhra Pradesh, India. Indian Journal of Animal Research. 52(11): 1649-1653. doi: 10.18805/ijar.B-3402.
A total of n=510 samples comprising of faecal swabs from livestock (n=245), foods of animal origin (n=180) and human stools (n=85) were examined to detect Arcobacter species employing cultural and PCR methods. Overall, 11.7% of samples were found positive for Arcobacter species by genus-specific PCR. On screening faecal samples of livestocks, higher positivity was observed in pigs (23.3%), followed by chicken (16.6%), turkey (15.0%), cattle (10.0%), duck (10.0%) and sheep (6.6%). With regard to foods of animal origin, higher positivity was observed in pork samples (15.0%), followed by chicken (12.5%), milk (10.0%) and mutton (7.5%). In humans, the stool samples of farm workers revealed high positivity (13.3%) followed by veterinary students (8.0%) and diarrhoeic humans (6.66%). Using cultural method, a total of 41 (8.03%) Arcobacter isolates were recovered. The multiplex-PCR assay enabled detection of Arcobacter butzleri (16/41), Arcobacter cryaerophilus (13/41) and Arcobacter skirrowii (12/41). The results signify the occurrence of Arcobacter species in animal faeces, foods of animal origin and humans in Andhra Pradesh, India.
  1. Atabay, H. I., Waino, M. and Madsen, M. (2006). Detection and diversity of various Arcobacter species in Danish poultry. Int. J. Food Microbiol. 109(1): 139-145.
  2. Cardoen, S., Van Huffel, X., Berkvens, D., Quoilin, S., Ducoffre, G., Saegerman, C., Speybroeck, N., Imberechts, H., Herman, L., Ducatelle, R. and Dierick, K. (2009). Evidence-based semiquantitative methodology for prioritization of foodborne zoonoses. Foodborne Pathog. Dis. 6(9): 1083-1096.
  3. Collado, L. and Figueras, M. J. (2011). Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin. Microbiol. Rev. 24(1): 174-192.
  4. De Smet, S., De Zutter, L. and Houf, K. (2011). Small ruminants as carriers of the emerging foodborne pathogen Arcobacter on small and medium farms. Small Ruminant Res. 97(1): 124-129.
  5. Figueras, M. J., Levican, A., Pujol, I., Ballester, F., Rabada Quilez, M. J. and Gomez Bertomeu, F. (2014). A severe case of persistent diarrhoea associated with Arcobacter cryaerophilus but attributed to Campylobacter sp. and a review of the clinical incidence of Arcobacter spp. New Microbes New infect. 2(2): 31-37.
  6. Harmon, K. M. and Wesley, I. V. (1996). Identification of Arcobacter isolates by PCR. Lett. Appl. Microbiol. 23(4): 241-244.
  7. Ho, H. T., Lipman, L. J. and Gaastra, W. (2006). Arcobacter, what is known and unknown about a potential foodborne zoonotic agent!. Vet. Microbiol. 115(1): 1-13.
  8. Houf, K. and Stephan, R. (2007). Isolation and characterization of the emerging foodborn pathogen Arcobacter from human stool. J. Microbiol. Methods. 68(2): 408-413.
  9. Houf, K., Devriese, L. A., Van Hoof, J. and Vandamme, P. (2001). Susceptibility of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii to antimicrobial agents used in selective media. J. Clin. Microbiol. 39(4): 1654-1656.
  10. Houf, K., Tutenel, A., De Zutter, L., Van Hoof, J. and Vandamme, P. (2000). Development of a multiplex PCR assay for the simultaneous detection and identification of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii. FEMS Microbiol. Lett. 193(1):89-94.
  11. ICMSF. (2002). Microorganisms in foods. 7. Microbiological testing in food safety management. International Commission on Microbiological Specifications for Foods. Kluwer Academic Plenum Publishers, NewYork.
  12. Jiang, Z. D., DuPont, H. L., Brown, E. L., Nandy, R. K., Ramamurthy, T., Sinha, A., Ghosh, S., Guin, S., et al. (2010). Microbial etiology of travelers’ diarrhea in Mexico, Guatemala, and India: importance of enterotoxigenic Bacteroides fragilis and Arcobacter species. J. Clin. Microbiol. 48(4): 1417-1419.
  13. Kabeya, H., Maruyama, S., Morita, Y., Ohsuga, T., Ozawa, S., Kobayashi, Y., Abe, M., Katsube, Y. and Mikami, T. (2004). Prevalence of Arcobacter species in retail meats and antimicrobial susceptibility of the isolates in Japan. Int. J. Food Microbiol. 90(3): 303-308.
  14. Mohan, H. V., Rathore, R. S., Dhama, K., Ramees, T. P., Patyal, A., Bagalkot, P. S., Wani, M. Y., et al. (2014). Prevalence of Arcobacter spp. in humans, animals and foods of animal origin in India based on cultural isolation, antibiogram, PCR and multiplex PCR detection. Asian J. Anim. Vet. Adv. 9(8):452-66
  15. Patyal, A., Rathore, R. S., Mohan, H. V., Dhama, K. and Kumar, A. (2011). Prevalence of Arcobacter spp. in humans, animals and foods of animal origin including sea food from India. Transbound. Emerg. Dis. 58(5): 402-410.
  16. Ramees, T. P., Rathore, R. S., Bagalkot, P. S., Mohan, H. V., Kumar, A. and Dhama, K. (2014). Detection of Arcobacter butzleri and Arcobacter cryaerophilus in clinical samples of humans and foods of animal origin by cultural and multiplex PCR based methods. Asian J. Anim. Vet. Adv.9 :243-52.
  17. Rivas, L., Fegan, N. and Vanderlinde, P. (2004). Isolation and characterisation of Arcobacter butzleri from meat. Int. J. Food. Microbiol. 91(1): 31-41.
  18. Samie, A., Obi, C. L., Barrett, L. J., Powell, S. M. and Guerrant, R. L. (2007). Prevalence of Campylobacter species, Helicobacter pylori and Arcobacter species in stool samples from the Venda region, Limpopo, South Africa: studies using molecular diagnostic methods. J. Infect., 54(6): 558-566.
  19. Vandamme, P., Dewhirst, F. E., Paster, B. J., On, S. L. W., Brenner, D. J., Kreig, N. P., et al. (2005). Genus II. Arcobacter. In Bergey’s Manual ofSystematic Bacteriology. New York, USA: Springer.
  20. Vandamme, P., Vancanneyt, M., Pot, B., Mels, L., Hoste, B., Dewettinck, D., Vlaes, L., Van Den Borre, C., Higgins, R., Hommez, J. and Kersters, K. (1992). Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int. J. Syst. Evol. Microbiol. 42(3): 344-356. 

Editorial Board

View all (0)