Published In
Indian Journal of Animal Research
Article Metrics

0
Views
0
Citations
Reviewed By
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Research Article
volume 52 issue 7 (july 2018) : 1025-1030, Doi: 10.18805/ijar.B-3318
Clinico-haematological studies on experimental Cryptosporidium parvum Jammu isolate infection in Swiss albino mice
1Division of Veterinary Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu-181102, Jammu and Kashmir, India.
Submitted03-10-2016|
Accepted03-03-2017|
First Online 11-10-2017|
Cite article:- Bhagat Meenakshi, Sood Shilpa, Yadav Anish, Katoch Rajesh, Chakraborty Dibyendu, Godara Rajesh, Sultana Mudasir, Sangha Navrose (2017). Clinico-haematological studies on experimental Cryptosporidium parvum Jammu isolate infection in Swiss albino mice. Indian Journal of Animal Research. 52(7): 1025-1030. doi: 10.18805/ijar.B-3318.
ABSTRACT
The present study was conducted to determine the clinco-haematological effects of a well characterized Cryptosporidium parvum isolate in Swiss albino mice. Sixty female mice were divided into four groups. Group I mice served as healthy control. In group II, C. parvum oocysts were administered orally, mice of group III were given dexamethasone in drinking water whereas group IV mice were given dexamethasone along with C. parvum oocysts. Clinical signs were more severe in immunosuppressed infected mice and observed dullness, depression, inappetance, poor fur condition, progressive weakness, and decrease in body weight. In addition, mice in group IV showed profuse diarrhoea. An overall mortality rate of 7% and 20% was seen in group III and IV animals, respectively. Animals of group IV had significantly lower average body weight as compared to other groups around the time of peak infection with C. parvum which was recorded to be around 10th DPI. Based on severity of clinical disease and oocyst shedding intensity significant leukocytosis along with neutrophilia and lymphocytopenia was observed in group IV mice at 10th DPI as compared to mice in other groups. It was concluded that experimental infection with C. parvum in mice caused a severe clinical disease which peaked around 10th day and was seen to subsequently resolve around 15 DPI.
REFERENCES
- Abdou, A.A., Harba. N.H, Afifi. A.F. and Nada. E.F. (2013). Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia. International J. Infect. Dis.17: 593–600.
- Benamrouz, S., Conseil. V., Chabe. M., Praet. M., Audebert. C., Blervaque. R., Guyot. K., Gazzola. S., Mouray. A., Chassat. T. and Delaire. B., et al. (2014). Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model. Dis Models and Mech.7: 693-700.
- Castro, I.C., Oliveira. B.B., Slowikowski. J.J., Coutinho. B.P., Siqueira. F.J.W.S., Costa. L.B., Sevilleja. J.E., Almeida. C.A., Lima. A.A.M., Warren. C.A., Oria. R.B. and Guerrant. R.L. (2012). Arginine reduces Cryptosporidium parvum infection undernourished suckling mice involving both nitric oxide synthase and arginase. Nutrition. 28(6): 678–685.
- Certad, G., Benamrouz. S., Guyot. K., Mouray. A., T. Chassat., Flament. N., Delhaes. L., Coiteux. V., Delaire. B., Praet. M., Cuvelier. C., Gosset. P., Dei-Cas. E. and Creusy. C. (2012). Fulminant Cryptosporidiosis after Near-Drowning: a Human Cryptosporidium parvum Strain Implicated in Invasive Gastrointestinal Adenocarcinoma and Cholangiocarcinoma in an Experimental Model. Applied and Env Microbiol. 78(6): 1746–1751.
- Costa, L. B., John Bull. E.A., Reeves. J.T., Sevilleja. J.E, Freire. R.S., Hoffman. P.S., Lima. A.A.M., Oria, R.B., Roche. J.K., Guerrant. R.L. and Warren. C.A. (2011). Cryptosporidium-malnutrition interactions: mucosal disruption, cytokines and Tlr signaling in a weaned murine model. J. Parasitol. 97(6): 1113-1120.
- Fayer, R. (2004). Cryptosporidium: a water-borne zoonotic parasite. Vet. Parasitol.126: 37-56.
- Feng, Y., Ortega. Y., He. G., Das. P., Xu. M., Zhang. X., Fayer. R., Gatei. W., Cama. V. and Xiao. L. (2007). Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet. Parasitol. 144:1-9.
- Henricksen, S.A. and Pohlenz J.F.L. (1981). Staining of cryptosporidia by a modified Ziehl-Neelsen technique. Acta Veterinaria Scandinavica. 22: 594.
- Jain, N.C. (1986). Schalm’s Veterinary Haematology, 4th edn., Lea Febiger, Philadelphia, USA.
- Khan, S.M., Debnath. C., Pramanik. A.K., Xiao. L., Nozaki. T. and Ganguly. S. (2010). Molecular characterisation and assessment of zoonotic transmission of Cryptosporidium from dairy cattle in West Bengal, India. Vet. Parasitol. 160: 316-318.
- Maurya, P.S., Garg. R., Bannerjee. P.S., Kumar. S., Kundu. K., Ram. H. and Raina. O.K., (2013). Genotyping of Cryptosporidium species reveals prevalence of zoonotic Cryptosporidium parvum subtype in bovine calves of north India. Indian J. Anim. Sci. 83: 1018-1023.
- Navin, T.R. and Juranek. D.D. (1984). Cryptosporidiosis: Clinical, epidemiologic and parasitologic review. Reviews Inf. Dis. 6: 313.
- OIE (2008). Cryptosporidiosis. Chapter 2.9.4. In : OIE Terrestrial Manual, pp. 1192-1215.
- Qavami, M. and Sadraei. (2011). C. parvum infection in mice and rats. Jundishapur J. Microbiol.4 (3): 185-190.
- Raskova, V., Kvetonova. D., Sak. B., McEvoy. J., Edwinson. A., Stenger. B. and Kvac. M. (2012). Human Cryptosporidiosis Caused by Cryptosporidium tyzzeri and C. parvum Isolates Presumably Transmitted from Wild Mice. J. Clin Microbiol. 51(1):360–362.
- Rasmussen, K.R. and Healey. M.C. (1992). Experimental Cryptosporidium parvum Infections in Immunosuppressed Adult Mice. Infect. and Immun.60(4): 1648-1652.
- Singla, L., Gupta. M.P., Singh. H., Singh. S.T., Kaur. P. and Juyal. P.D. (2013). Antigen based diagnosis of Cryptosporidium parvum infection in faeces of cattle and buffalo calves. Indian J. Anim. Sci. 83:37.39.
- Snedecor, W.G. and Cochran. W.G. (1994). Statistical methods. 8th edn. Iowa State University Press, Ames.
- Tarazona, R., Blewett. D.A. and Carmona. M.D. (1998). Cryptosporidium parvum infection in experimentally infected mice: infection dynamics and effect of immunosuppression. Folia Parasitologica. 45: 101-107.
- Thompson, H.P., Dooley. J.S., Kenny. J., McCoy. M., Lowery. C.J., Moore. J.E. and Xiao. L. (2007). Genotypes and subtypes of Cryptosporidium species in neonatal calves in Northern Ireland. Parasitol. Res. 100: 619-624.
- Venu, R., Latha. B.R., Basith. A.S., Raj. D.G., Sreekumar. C. and Raman. M. (2012). Molecular prevalence of cryptosporidium spp. in dairy calves in southern states of India. Vet. Parasitol. 188: 19-24.
- Xiao, L. (2010). Molecular epidemiology of cryptosporidiosis: an update. Exp. Parasitol.124: 80-89.
- Xiao, L., Escalante. L., Yang. C., Sulaiman. I., Escalante. A.A., Monsali. R.J., Fayer. R., and Lal. A.A. (1999). Phylogenetic analysis of Cryptosporidium parasites based on the ssu rRNA gene locus. Applied and Env. Microbiol. 65: 1578-1583.
- Yadav, A. (2010). Epidemiological pattern and zoonotic potential of bovine cryptosporidiosis in Jammu district. Ph. D. Thesis. Sher- e-Kashmir university of Agricultural Sciences and Technology, Jammu, India.
Disclaimer :
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Copyright :
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this Article
APC
APC cover the cost of turning a manuscript into a published manuscript through peer-review process, editorial work as well as the cost of hosting, distributing, indexing and promoting the manuscript.
Publish With US
Submit your manuscript through user friendly platform and acquire the maximum impact for your research by publishing with ARCC Journals.
Become a Reviewer/Member
Join our esteemed reviewers panel and become an editorial board member with international experts in the domain of numerous specializations.
Open Access
Filling the gap between research and communication ARCC provide Open Access of all journals which empower research community in all the ways which is accessible to all.
Products and Services
We provide prime quality of services to assist you select right product of your requirement.
Support and Policies
Finest policies are designed to ensure world class support to our authors, members and readers. Our efficient team provides best possible support for you.
Follow us
Published In
Indian Journal of Animal Research