Clinico-haematological studies on experimental Cryptosporidium parvum Jammu isolate infection in Swiss albino mice

DOI: 10.18805/ijar.B-3318    | Article Id: B-3318 | Page : 1025-1030
Citation :- Clinico-haematological studies on experimental Cryptosporidium parvum Jammu isolate infection in Swiss albino mice.Indian Journal Of Animal Research.2018.(52):1025-1030
Meenakshi Bhagat, Shilpa Sood, Anish Yadav, Rajesh Katoch, Dibyendu Chakraborty, Rajesh Godara, Mudasir Sultana and Navrose Sangha shilpasoo@gmail.com
Address : Division of Veterinary Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu-181102, Jammu and Kashmir, India.
Submitted Date : 3-10-2016
Accepted Date : 3-03-2017

Abstract

 The present study was conducted to determine the clinco-haematological effects of a well characterized Cryptosporidium parvum isolate in Swiss albino mice. Sixty female mice were divided into four groups. Group I mice served as healthy control. In group II, C. parvum oocysts were administered orally, mice of group III were given dexamethasone in drinking water whereas group IV mice were given dexamethasone along with C. parvum oocysts. Clinical signs were more severe in immunosuppressed infected mice and observed dullness, depression, inappetance, poor fur condition, progressive weakness, and decrease in body weight. In addition, mice in group IV showed profuse diarrhoea. An overall mortality rate of 7% and 20% was seen in group III and IV animals, respectively. Animals of group IV had significantly lower average body weight as compared to other groups around the time of peak infection with C. parvum which was recorded to be around 10th DPI. Based on severity of clinical disease and oocyst shedding intensity significant leukocytosis along with neutrophilia and lymphocytopenia was observed in group IV mice at 10th DPI as compared to mice in other groups. It was concluded that experimental infection with C. parvum in mice caused a severe clinical disease which peaked around 10th day and was seen to subsequently resolve around 15 DPI.

Keywords

Cryptosporidium parvum Clinico-Haematological Swiss albino mice.

References

  1. Abdou, A.A., Harba. N.H, Afifi. A.F. and Nada. E.F. (2013). Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia. International J. Infect. Dis.17: 593–600.
  2. Benamrouz, S., Conseil. V., Chabe. M., Praet. M., Audebert. C., Blervaque. R., Guyot. K., Gazzola. S., Mouray. A., Chassat. T. and Delaire. B., et al. (2014). Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model. Dis Models and Mech.7: 693-700.
  3. Castro, I.C., Oliveira. B.B., Slowikowski. J.J., Coutinho. B.P., Siqueira. F.J.W.S., Costa. L.B., Sevilleja. J.E., Almeida. C.A., Lima. A.A.M., Warren. C.A., Oria. R.B. and Guerrant. R.L. (2012). Arginine reduces Cryptosporidium parvum infection undernourished suckling mice involving both nitric oxide synthase and arginase. Nutrition. 28(6): 678–685.
  4. Certad, G., Benamrouz. S., Guyot. K., Mouray. A., T. Chassat., Flament. N., Delhaes. L., Coiteux. V., Delaire. B., Praet. M., Cuvelier. C., Gosset. P., Dei-Cas. E. and Creusy. C. (2012). Fulminant Cryptosporidiosis after Near-Drowning: a Human Cryptosporidium parvum Strain Implicated in Invasive Gastrointestinal Adenocarcinoma and Cholangiocarcinoma in an Experimental Model. Applied and Env Microbiol. 78(6): 1746–1751.
  5. Costa, L. B., John Bull. E.A., Reeves. J.T., Sevilleja. J.E, Freire. R.S., Hoffman. P.S., Lima. A.A.M., Oria, R.B., Roche. J.K., Guerrant. R.L. and Warren. C.A. (2011). Cryptosporidium-malnutrition interactions: mucosal disruption, cytokines and Tlr signaling in a weaned murine model. J. Parasitol. 97(6): 1113-1120.
  6. Fayer, R. (2004). Cryptosporidium: a water-borne zoonotic parasite. Vet. Parasitol.126: 37-56.
  7. Feng, Y., Ortega. Y., He. G., Das. P., Xu. M., Zhang. X., Fayer. R., Gatei. W., Cama. V. and Xiao. L. (2007). Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet. Parasitol. 144:1-9.
  8. Henricksen, S.A. and Pohlenz J.F.L. (1981). Staining of cryptosporidia by a modified Ziehl-Neelsen technique. Acta Veterinaria Scandinavica. 22: 594.
  9. Jain, N.C. (1986). Schalm’s Veterinary Haematology, 4th edn., Lea Febiger, Philadelphia, USA.
  10. Khan, S.M., Debnath. C., Pramanik. A.K., Xiao. L., Nozaki. T. and Ganguly. S. (2010). Molecular characterisation and assessment of zoonotic transmission of Cryptosporidium from dairy cattle in West Bengal, India. Vet. Parasitol. 160: 316-318.
  11. Maurya, P.S., Garg. R., Bannerjee. P.S., Kumar. S., Kundu. K., Ram. H. and Raina. O.K., (2013). Genotyping of Cryptosporidium species reveals prevalence of zoonotic Cryptosporidium parvum subtype in bovine calves of north India. Indian J. Anim. Sci. 83: 1018-1023.
  12. Navin, T.R. and Juranek. D.D. (1984). Cryptosporidiosis: Clinical, epidemiologic and parasitologic review. Reviews Inf. Dis. 6: 313.
  13. OIE (2008). Cryptosporidiosis. Chapter 2.9.4. In : OIE Terrestrial Manual, pp. 1192-1215.
  14. Qavami, M. and Sadraei. (2011). C. parvum infection in mice and rats. Jundishapur J. Microbiol.4 (3): 185-190.
  15. Raskova, V., Kvetonova. D., Sak. B., McEvoy. J., Edwinson. A., Stenger. B. and Kvac. M. (2012). Human Cryptosporidiosis Caused by Cryptosporidium tyzzeri and C. parvum Isolates Presumably Transmitted from Wild Mice. J. Clin Microbiol. 51(1):360–362.
  16. Rasmussen, K.R. and Healey. M.C. (1992). Experimental Cryptosporidium parvum Infections in Immunosuppressed Adult Mice. Infect. and Immun.60(4): 1648-1652.
  17. Singla, L., Gupta. M.P., Singh. H., Singh. S.T., Kaur. P. and Juyal. P.D. (2013). Antigen based diagnosis of Cryptosporidium parvum infection in faeces of cattle and buffalo calves. Indian J. Anim. Sci. 83:37.39.
  18. Snedecor, W.G. and Cochran. W.G. (1994). Statistical methods. 8th edn. Iowa State University Press, Ames.
  19. Tarazona, R., Blewett. D.A. and Carmona. M.D. (1998). Cryptosporidium parvum infection in experimentally infected mice: infection dynamics and effect of immunosuppression. Folia Parasitologica. 45: 101-107.
  20. Thompson, H.P., Dooley. J.S., Kenny. J., McCoy. M., Lowery. C.J., Moore. J.E. and Xiao. L. (2007). Genotypes and subtypes of Cryptosporidium species in neonatal calves in Northern Ireland. Parasitol. Res. 100: 619-624.
  21. Venu, R., Latha. B.R., Basith. A.S., Raj. D.G., Sreekumar. C. and Raman. M. (2012). Molecular prevalence of cryptosporidium spp. in dairy calves in southern states of India. Vet. Parasitol. 188: 19-24.
  22. Xiao, L. (2010). Molecular epidemiology of cryptosporidiosis: an update. Exp. Parasitol.124: 80-89.
  23. Xiao, L., Escalante. L., Yang. C., Sulaiman. I., Escalante. A.A., Monsali. R.J., Fayer. R., and Lal. A.A. (1999). Phylogenetic analysis of Cryptosporidium parasites based on the ssu rRNA gene locus. Applied and Env. Microbiol. 65: 1578-1583.
  24. Yadav, A. (2010). Epidemiological pattern and zoonotic potential of bovine cryptosporidiosis in Jammu district. Ph. D. Thesis. Sher-    e-Kashmir university of Agricultural Sciences and Technology, Jammu, India. 

Global Footprints