In-silico structural, functional and immunogenic characterization of Taenia solium TS14 protein

DOI: 10.18805/ijar.B-3313    | Article Id: B-3313 | Page : 1018-1024
Citation :- In-silico structural, functional and immunogenic characterization of Taenia solium TS14 protein.Indian Journal Of Animal Research.2018.(52):1018-1024
Chitra Joshi and Siddharth Gautam
Address : Department of Animal Husbandry, Dairy and fisheries, Ministry of Agriculture and farmers welfare, Basot-263 680, Uttarakhand, India.
Submitted Date : 26-09-2016
Accepted Date : 15-03-2017


TS14, a Cysticercosis cellulosae derived protein, has been exploited for immunodiagnosis of cysticercosis in humans and pigs. However, the information on structure, function, stability and immunogenicity of TS14 derived from different isolates is primarily lacking. The present study deals with in-silico characterization of six TS14 isolates. High thermostability and an isoelectric point of 9.41 were recorded. Based on N-terminal amino acid residues, high resistance to intracellular proteases with extended in-vivo and in-vitro half-lives was predicted. TS14 is foreseen as a secretory protein with a signal peptide and an extracellular localization. Structural analysis of TS14 exhibited the dominance of helices in the secondary structure (92% coverage) with majority of residues showing high and medium solvent accessibility. High lysine content and presence of multiple nucleotide binding sites in TS14 suggests interaction with RNA/DNA and a role in their metabolism. Immunogenic profiling predicted presence of four distinct B-cell epitopes. Mutational analysis based on the single amino acid substitutions among six TS14 isolates demonstrated minor variations in structural stability; however, all the substitutions were well tolerated. Moreover, all the isolates revealed almost identical immunogenic profile with an equivocal potential to elicit the antibody-mediated immune response.


B-cell epitopes Cysticercosis In-silico Mutations Taenia solium TS14.


  1. Biswas, R., Parija, S.C. and Narayan, S.K. (2004). Dot-ELISA for the diagnosis of neurocysticercosis. Rev. Inst. Med. Trop. Sao Paulo, 46: 249-52.
  2. Chauhan, J.S., Rao, A. and Raghava, G.P. (2013). In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One, 8: e67008.
  3. Colovos, C. and Yeates, T.O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci., 2: 1511-9.
  4. D’Souza, P.E. and Hafeez, M. (1999). Detection of Taenia solium cysticercosis in pigs by ELISA with an excretory-secretory antigen. Vet. Res. Commun., 23: 293-8.
  5. da Silva, A.A., Maia, N.M., Machado, E.R., Ldos, A.J., Vaz, F. and Silva, H. (2006). Recombinant expression of Taenia solium TS14 antigen and its utilization for immunodiagnosis of neurocysticercosis. Acta Tropica, 100: 192-98.
  6. da Silva, M.R.D., Uyhara, C.N., Silva, F.H., Espindola, N.M., Poleti, M.D., Vaz, A.J. and Maia, A.A. (2012). Cysticercosis in experimentally and naturally infected pigs: parasitological and immunological diagnosis. Pesquisa Veterinária Brasileira, 32: 297-302.
  7. Dalziel, M., Crispin, M., Scanlan, C.N., Zitzmann, N. and Dwek, R.A. (2014). Emerging principles for the therapeutic exploitation of glycosylation. Science, 343: 1235681.
  8. Deckers, N. and Dorny, P. (2010). Immunodiagnosis of Taenia solium taeniosis/cysticercosis. Trends Parasitol, 26: 137-44.
  9. Del Brutto, O.H., Rajshekhar, V., White, A.C., Jr., Tsang, V.C., Nash, T.E., Takayanagui, O.M., Schantz, P.M., Evans, C.A., Flisser, A., Correa, D. et al., (2001). Proposed diagnostic criteria for neurocysticercosis. Neurology, 57: 177-83.
  10. Del Brutto, O.H., Santibanez, R., Idrovo, L., Rodriguez, S., Diaz-Calderon, E., Navas, C., Gilman, R.H., et al. F., Mosquera, A., Gonzalez, A.E. et al., (2005). Epilepsy and neurocysticercosis in Atahualpa: a door-to-door survey in rural coastal Ecuador. Epilepsia, 46: 583-7.
  11. Dwek, R.A. (1998). Biological importance of glycosylation. Dev Biol Stand, 96: 43-7.
  12. Eisenhaber, B., Bork, P. and Eisenhaber, F. (1999). Prediction of potential GPI-modification sites in proprotein sequences. J. Mol. Biol., 292: 741-58.
  13. Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000). Predicting subcellular localization of proteins based on their N-    terminal amino acid sequence. J. Mol. Biol., 300: 1005-16.
  14. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. and Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook, [Walker JM (ed)]. Humana Press, pp. 571-    607.
  15. Goldberg, T., Hecht, M., Hamp, T., Karl, T., Yachdav, G., Ahmed, N., Altermann, U., Angerer, P., et al., S., Balasz, K. et al., (2014). LocTree3 prediction of localization. Nucleic Acids Res., 42: W350-5.
  16. Greene, R.M., Wilkins, P.P. and Tsang, V.C. (1999). Diagnostic glycoproteins of Taenia solium cysts share homologous 14- and 18-    kDa subunits. Mol. Biochem. Parasitol., 99: 257-61.
  17. Hancock, K., Khan, A., Williams, F.B., Yushak, M.L., Pattabhi, S., Noh, J. and Tsang, V.C. (2003). Characterization of the 8-kilodalton antigens of Taenia solium metacestodes and evaluation of their use in an enzyme-linked immunosorbent assay for serodiagnosis. J. Clin. Microbiol., 41: 2577-86.
  18. Larsen, J.E., Lund, O. and Nielsen, M. (2006). Improved method for predicting linear B-cell epitopes. Immunome. Res., 2: 2.
  19. Luthy, R., Bowie, J.U. and Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356: 83-5.
  20. Makarova, O.V., Makarov, E.M., Liu, S., Vornlocher, H.P. and Luhrmann, R. (2002). Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. EMBO J., 21: 1148-57.
  21. Mergulhao, F.J., Summers, D.K. and Monteiro, G.A. (2005). Recombinant protein secretion in Escherichia coli. Biotechnol. Adv., 23: 177-202.
  22. Montano, S.M., Villaran, M.V., Ylquimiche, L., Figueroa, J.J., Rodriguez, S., Bautista, C.T., et al., (2005). Neurocysticercosis: association between seizures, serology, and brain CT in rural Peru. Neurology, 65: 229-33.
  23. Nicoletti, A., Bartoloni, A., Sofia, V., Bartalesi, F., Chavez, J.R., Osinaga, R., Paradisi, F., Dumas, J.L., Tsang, V.C., Reggio, A. et al., (2005). Epilepsy and neurocysticercosis in rural Bolivia: a population-based survey. Epilepsia, 46: 1127-32.
  24. Ofran, Y. and Rost, B. (2007). ISIS: interaction sites identified from sequence. Bioinformatics, 23: e13-6.
  25. Pontius, J., Richelle, J. and Wodak, S.J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol., 264: 121-36.
  26. Rocha, S.M., Suzuki, L.A., Silva, A.D., Arruda, G.C. and Rossi, C.L. (2002). A rapid latex agglutination test for the detection of anti-    cysticercus antibodies in cerebrospinal fluid (CSF). Rev. Inst. Med. Trop. Sao Paulo, 44: 57-8.
  27. Roman, G., Sotelo, J., Del Brutto, O., Flisser, A., Dumas, M., Wadia, N., Botero, D., Cruz, M., et al., (2000). A proposal to declare neurocysticercosis an international reportable disease. Bull. World Health Organ., 78: 399-406.
  28. Schaffert, N., Hossbach, M., Heintzmann, R., Achsel, T. and Luhrmann, R. (2004). RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J., 23: 3000-9.
  29. Sorvillo, F.J., DeGiorgio, C. and Waterman, S.H. (2007). Deaths from cysticercosis, United States. Emerg. Infect. Dis., 13: 230-5.
  30. Tsang, V.C., Pilcher, J.A., Zhou, W., Boyer, A.E., Kamango-Sollo, E.I., Rhoads, M.L., Murrell, K.D., et al.(1991). Efficacy of the immunoblot assay for cysticercosis in pigs and modulated expression of distinct IgM/IgG activities to Taenia solium antigens in experimental infections. Vet. Immunol. Immunopathol., 29: 69-78.
  31. Wandra, T., Subahar, R., Simanjuntak, G.M., Margono, S.S., Suroso, T., Okamoto, M., Nakao, M., et al., (2000). Resurgence of cases of epileptic seizures and burns associated with cysticercosis in Assologaima, Jayawijaya, Irian Jaya, Indonesia, 1991-95. Trans. R. Soc. Trop. Med. Hyg., 94: 46-50.
  32. White Jr, A.C. and Atmar, R.L. (2002). Infections in Hispanic immigrants. Clin. Infect. Dis., 34: 1627-32.
  33. Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., Honigschmid, P., et al., (2014). Predict Protein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res., 42: W337-43.

Global Footprints