Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 52 issue 4 (april 2018) : 533-537

Association study of Single Nucleotide Polymorphisms (SNP) in Toll-like Receptor 9 gene with bovine tuberculosis 

Ashish Bhaladhare, Deepak Sharma, Anuj Chauhan, Amit Kumar, Arvind Sonwane, Ran Vir Singh, Pushpendra Kumar, Subodh Kumar, Bharat Bhushan
1<p>Division of Animal Genetics,&nbsp;Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India.</p>
Cite article:- Bhaladhare Ashish, Sharma Deepak, Chauhan Anuj, Kumar Amit, Sonwane Arvind, Singh Vir Ran, Kumar Pushpendra, Kumar Subodh, Bhushan Bharat (2017). Association study of Single Nucleotide Polymorphisms (SNP) in Toll-likeReceptor 9 gene with bovine tuberculosis . Indian Journal of Animal Research. 52(4): 533-537. doi: 10.18805/ijar.v0iOF.7257.

Toll-like Receptor 9 (TLR9) play an important role in recognition of components of intracellular pathogens like Mycobacterium bovis and subsequent activation of both innate and adaptive immune response and is potential strong candidates for investigating genetic basis of disease resistance. Present investigation was aimed at exploring the association of four SNPs in TLR9 gene with susceptibility/resistance against bovine tuberculosis infection in cattle. Three of SNPs under investigation (rs210982793, rs207807011, rs209190268) revealed polymorphism whereas monomorphism was observed in SNP rs55617140. SNP loci rs210982793 and rs207807011 were significantly (P < 0.01) associated with susceptibility to bovine tuberculosis in the case control population. Both these SNPs loci were non-synonymous, thus suggestive of their functional role in the immune response against bovine tuberculosis.  

  1. Ameni, G., Aseffa, A., Engers, H., Young, D., Gordon, S., Hewinson, G. and Vordermeier. M. (2007). Both prevalence and severity of pathology of bovine tuberculosis are higher in Holsteins than in Zebu breeds under field cattle husbandry in central Ethiopia. Clin. Vaccine Immunol. 14: 1356–1361.

  2. Bafica, A., Scanga, C.A., Feng, C.G., Leifer, C., Cheever, A. and Sher, A. (2005). TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202:1715–1724.

  3. Bermingham, M.L., Bishop, S.C., Woolliams, J.A., Pong-Wong, R., Allen, A.R., S.H. McBride, J.J. Ryder, D.M. Wright, R.A. Skuce, S.W.J. McDowell. and Glass, E.J. (2014). Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity, 112: 543–551.

  4. Bermingham, M.L., More, S.J., Good, M., Cromie, A.R., Higgins, I.M., Brotherstone, S. and Berry, D.P. (2009). Genetics of tuberculosis in Irish Holstein-Friesian dairy herds. J. Dairy Sci. 92: 3447-3456.

  5. Bhaladhare , A., Sharma, D., Kumar, A., Sonwane, A., Chauhan, A., Singh, R., Kumar, P., Yadav, R., Baqir ,M., Bhushan , B. and Prakash, O. (2016). Single nucleotide polymorphisms in toll-like receptor genes and case-control association studies with bovine tuberculosis, Vet.World 9: 458-464.

  6. Brotherstone, S., White, I. M. S., Coffey, M., Downs, S. H., Mitchell, A. P., Clfton-Hadley, R. S., More, S. J., Good, M. and Woolliams, J.A. (2010). Evidence of genetic resistance of cattle to infection with Mycobacterium bovis. J. Dairy Sci. 93: 1234–1242

  7. Chen, Z., Wang, W., Liang , J., Wang, J., Feng, S., and Zhang, G. (2015) Association between toll-like receptors 9 (TLR9) gene polymorphism and risk of pulmonary tuberculosis: meta-analysis. BMC Pulm. Med. 15:57. 

  8. Dhama, K., Rajagunalan, S., Chakraborty, S., Verma A.K., Kumar, A., Tiwari, R. and Kapoor, S. (2013). Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: A review. Pak. J. Biol. Sci. 16: 1076-1085.

  9. Fremond, C.M., Yeremeev, V., Nicolle, D.M., Jacobs, M., Quesniaux, V.F. and Ryffel, B. (2004). Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J. Clin. Invest. 114:1790–9.

  10. Garnier, T., Eiglmeier, K., Camus, J.C., Medina, N., Mansoor, H., Pryor, M., Duthoy, S, Grondin, S., Lacroix, C., Monsempe, C., Simon, S., Harris, B., Atkin, R., Doggett, J., Mayes, R., Keating, L, Wheeler, P.R., Parkhill, J., Barrell, B.G., Cole, S.T., Gordon, S.V. and Hewinson, R.G. (2003). The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA., 100:7877-82. 

  11. Goldammer, T., Zerbe, H., Molenaar, A., Schuberth, H.J., Brunner, R.M., Kata, S.R. and Seyfert, H.M. (2004). Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol. 11:174-85.

  12. Hawn, T.R., Misch, E.A., Dunstan, S.J., Thwaites, G.E., Lan, N.T., Quy, H.T., Chau, T.T., Rodrigues, S., Nachman, A., Janer, M., Hien, T.T., Farrar, J.J., Aderem, A. (2007) A Common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur. J. Immunol. 37:2280-9.

  13. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. and Akira, S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408:740–5.

  14. Mortaz, E., Adcock, I.M., Tabarsi, P., Masjedi, M.R., Mansouri, D., Velayati, A,A., Casanova, J.L. and Barnes, P.J. (2014) Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis. J Clin Immunol. 35:1-10

  15. Neill, S.D., Pollock, J.M., Bryson, D.B. and Hanna, J. (1994). Pathogenesis of Mycobacterium bovis infection in cattle. Vet. Microbiol. 40:41–52.

  16. Perry, B.D., Grace, D. and Sones, K. (2013). Current drivers and future directions of global livestock disease dynamics. Proc. Natl. Acad. Sci. USA., 110: 20871–20877

  17. Phillips, C.J., Foster, C.R., Morris, P.A. and Teverson, R. (2002).Genetic and management factors that influence the susceptibility of cattle to Mycobacterium bovis infection. Anim. Health Res. Rev. 3: 3-13.

  18. Raghvendra., Sharma, V., Arya, G.S., Hedaytullah, M., Tyagi, S., Kataria, R., Pachpute, P. A. and Sharma, S.J. (2010). Clinical aspects of bovine tuberculosis-a chronic bacterial disease of cattle: an overview. Int. J. Phytopharm. 1: 114-118.

  19. Rodriguez-Campos, S., Smith, N.H., Boniotti M.B. and Aranaz, A. (2014). Overview and phylogeny of Mycobacterium tuberculosis complex organisms: Implications for diagnostics and legislation of bovine tuberculosis. Res. Vet. Sci. 97 Suppl: S5-S19

  20. Scanga, C.A., Bafica, A., Feng, C.G., Cheever, A.W., Hieny, S. and Sher, A. (2004) MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun. 72: 2400–2404

  21. Taylor, D.L., Zhong, L., Begg, D.J., de Silva, K. and Whittington, R.J. (2008) Toll-like receptor genes are differentially expressed at the sites of infection during the progression of Johne’s disease in outbred sheep. Vet. Immunol. Immunop. 124: 132–151 

  22. Tsairidou, S., Woolliams, J.A., Allen, A.R., Skuce, R.A., McBride, S.H., Wright, D.M., Bermingham, M.L., Pong-Wong, R., Matika, O.,. McDowell, S.W.J, Glass, E.J. and Bishop, S.C. (2014). Genomic Prediction for Tuberculosis Resistance in Dairy Cattle. PLoS ONE 9: e96728

  23. Velez, D.R., Wejse, C., Stryjewski, M.E., Abbate, E., Hulme, W.F., Myers, J.L., Estevan, R., Patillo, S.G., Olesen, R., Tacconelli, A., Sirugo, G., Gilbert, J.R., Hamilton, C.D. and Scott, W. K. (2010). Variants in Toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum. Genet. 127:65–73

  24. Verma, A.K., Dhama, K., Chakraborty, S., Kumar, A., Tiwari, R., Rahal, A., Mahima, Singh, S.V. (2014a). Strategies for combating and eradicating important infectious diseases of animals with particular reference to India: Present and future perspectives. Asian J. Anim. Vet. Adv. 9: 77-106.

  25. Verma, A.K., Tiwari, R., Chakraborty, S., Neha, Saminathan, M., Dhama K. and Singh, S.V. (2014). Insights into Bovine Tuberculosis (bTB), Various Approaches for its Diagnosis, Control and its Public Health Concerns: An Update. Asian J. Anim. Vet. Adv. 9: 323-344.

  26. Zhang, Y., Jiang, T., Yang, X., Xue, Y., Wang , C., Liu, J. , Zhang, X., Chen, Z., Zhao, M. and Li, J.C. (2013).Toll-like receptor -1, -2, and -6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-    analysis. PLoS One 8: e63357.

  27. Zhong, L., Di Fiore, L., Taylor, D., Begg, D., de Silva K. and Whittington, R.J. (2009) Identification of differentially expressed genes in ileum, intestinal lymph node and peripheral blood mononuclear cells of sheep infected with Mycobacterium avium subsp. paratuberculosis using differential display polymerase chain reaction. Vet. Immunol. Immunopathol. 131: 177–189

Editorial Board

View all (0)