Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 51 issue 2 (april 2017) : 340-343

Culture and expansion of Adipose derived Mesenchymal stem cells in Ovine

J. Violet Beaulah, S. Ushakumary, T.A. Kannan*, B. Justin William, Geetha Ramesh, M. Parthiban, A. Raja
1<p>Centre for Stem Cell Research and Regenerative Medicine,&nbsp;Tamil Nadu Veterinary and Animal Sciences University, Chennai-600 007, India.</p>
Cite article:- Beaulah Violet J., Ushakumary S., Kannan* T.A., William Justin B., Ramesh Geetha, Parthiban M., Raja A. (2017). Culture and expansion of Adipose derived Mesenchymal stem cells in Ovine . Indian Journal of Animal Research. 51(2): 340-343. doi: 10.18805/ijar.v0iOF.7001.

Culture and expansion of Adipose derived Mesenchymal stem cells (ADMSCs) in Ovine was carried out in this study. Ovine adipose tissue samples were collected from Chennai Corporation slaughter house under sterile condition in normal saline with five per cent povidone iodine, antibiotic and antimycotic solutions. Collected tissue samples were weighed and digested using collagenase enzyme to isolate adipose tissue derived mesenchymal stem cells (ADMSCs). Cell yield and viability of the cells were calculated by using trypan blue exclusion test. The cells were seeded at the density of one million cells in one T25 culture flask in Dulbecco’s modified Eagle’s medium-high glucose (DMEM-HG). On the day of seeding, the cells showed spherical morphology. Plastic adherence was noticed 24 hrs after seeding. Cell expansion was observed after 3 days. At P0 level, 70% confluency was attained on day 14 and the time taken to reach 70% confluency was reduced to 3-4 days in subsequent passages. 


  1. Al-Nbaheen, M., Vishnubalaji, R., Ali, D., Bouslimi, A., Al-Jassir, F., Megges, M., Prigione, A., Adjaye, J., Kassem, M. and Aldahmash, A. (2012). Human Stromal (Mesenchymal) Stem Cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev and Rep. 2013: 32–43.

  2. Barberini, J. D., Natália, P. P. F., Mariana, S. M., Leandro, M., Amanda, J. L., Marta, C. H., Mateus, J.S., Marjorie, A.G., Fernanda, C. L. A. and Rogério, M. A. (2014). Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Research & Therapy. 5:1-11.

  3. Bunnell, B. A., Flaat, M., Gagliardi, C., Patel, B. and Ripoll, C. (2008). Adipose-derived stem cells: Isolation, expansion and differentiation. NIH Public Access Author Manuscript. 45: 115–120. 

  4. Fadel, L., Viana, B. R., Feitosa, M. L. T., Caroline, A., Roballo, M. E. K. C. S., Casals, J. B., Pieri, N.C.G., Meirelles, F.V., Martins, D. S., Miglino, M. A. and Ambrosio, C. E. (2011). Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep. Acta Circurgica Brasileria. 26:1678-2674.

  5. Fraser, K. J., Wulur, I., Alfonso, Z. and Hedrick, M. H. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24:150-154.

  6. Grzesiak, J., Marycz, K., Czogala, J., Wrzeszcz, K. and Nicpon, J. (2011). Comparison of behavior, morphology and morphometry of equine and canine adipose derived mesenchymal stem cells in culture. Int. J. Morphol, 29: 1012-1017.

  7. Hepsibha, P., Meenambigai, T. V., Mangalagowri, A., Palanisamy, A., Stalin, A., Nithya, S. and Kumanan, K. (2011). Multipotent Differentiation potential of buffalo adipose tissue derived mesenchymal stem cells. Asian J. Anim. Vet.Adv . 6: 772-788.

  8. Kakudo, N., Naoki, M., Takeshi, O. and Kenji, K. (2014). Potential of adipose-derived stem cells for regeneration medicine:Clinical application and usefulness of fat grafting. Stem Cell Res. Ther. 4 :1-3.

  9. Liu, Z., Wang, H., Zhang, Y., Zho, J. and Lin, Q. (2010). Efficient isolation of cardiac stem cells from brown adipose. J.Biomed. Biotechnol. 2010:1-9.

  10. Locke, M., Windsort, J. and Dunbar, P. R. (2009). Human adipose-derived stem cells: isolation characterization and applications in surgery. ANZ J Surg. 79: 235-244.

  11. Lysak, D., Vlas, T., Holubova, M., Miklikova, M. and Jindra, P. (2013). In vitro testing of immunosupressive effects of mesenchymal stromal cells on lymphocytes stimulated with alloantigens. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.157:1-5.

  12. Marappagoundar, D., Indumathi, S., Rajkumar, S., Pachaiyappan, V., Sangeeth Kumar, G., Vidya, V. and Sudarsanam, D. (2010). Characterization of human adipose tissue derived hematopoietic stem cell, mesenchymal stem cell and side population cells. International J. of Biol. 2:71-78.

  13. Millan, A., Landerholm, T. and Chapman, J. R. (2013). Comparison between collagenase adipose digestion and stroma cell mechanical dissociation for mesenchymal stem cell separation. McNair Scholars J. 15: 86-101.

  14. Neupane, M., Chang, C. C., Kiupe, M. and Burkan, V. Y. (2008). Isolation and Characterization of canine adipose–derived mesenchymal stem cells. Tissue Engineering. 14:1007 -1015.

  15. Niyaz. M, Gurpinar, O. A., Gunaydin, S. and Onur, A. M. (2012). Isolation, culturing and characterization of rat adipose tissue derived mesenchymal stem cells: a simple technique. Turk J Biol. 36: 658-664.

  16. Schwarz, C., Leicht, U., Rothe, C., Drosse, I., Luibl, V., Röcken, M. and Schieker, M. (2012). Effects of different media on proliferation and differentiation capacity of canine, equine and porcine adipose derived stem cells. Res. Vet. Sci. 93:457–462.

  17. Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., Fraser, J. K. and Hedrick, M. H. (2005). Multipotential differentiation of adipose tissue derived stem cells. Keio J Med. 54: 132-141.

  18. Vieira, N. M., Brandalise, V., Zucconi, E., Secco, M., Strauss, B. E. and Zatz, M. (2010). Isolation, characterization and differentiation potential of canine adipose-derived stem cells. Cell Transplantation. 19: 279–289.

  19. Yang, H. J., Kim, K. J., Kim, M. K., Lee, S. J., Ryu, Y. H., Seo, B. F., Oh, D.Y., Ahn, S.T., Lee, H.Y. and Rhie, J.W. (2014). The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells. Cell tissues organs. 199: 373-383.

  20. Zhang, N., Dietrich, M. A. and Lopez, M. J. (2014). Therapeutic doses of multipotent stromal cells from minimal adipose tissue. Stem Cell Rev. Rep. Springerlink.com.

  21. Zuk, P (2012). Adipose-derived stem cells in tissue regeneration: A review. ISRN stem cells. 2013:1- 35.

  22. Zuttion, M. S. S. R., Cristiane, V.W., Pedro, A. L., Celso, T. and Irina, K. (2013). Adipose tissue-derived stem cells and the importance of animal model standardization for pre-clinical trials. Rev. Bras. Cardiol. Invasiva. 21:2179-2186.

     

Editorial Board

View all (0)