Prevalence and molecular characterization of extended-spectrum b-Lactamases (blaTEM) producing Escherichia coli isolated from humans and foods of animal origin in Chhattisgarh, India

DOI: 10.18805/ijar.11165    | Article Id: B-3035 | Page : 310-315
Citation :- Prevalence and molecular characterization of extended-spectrum b-Lactamases (blaTEM) producing Escherichia coli isolated from humans andfoods of animal origin in Chhattisgarh, India .Indian Journal Of Animal Research.2017.(51):310-315

Prashant Dewangan, Sanjay Shakya*, Anil Patyal, Nitin E. Gade and  Bhoomika

shakyadurg@gmail.com
Address :

Department of Veterinary Public Health and Epidemiology, College of Veterinary Science and Animal Husbandry, Chhattisgarh Kamdhenu Vishwa Vidyalaya, Anjora, Durg– 491001 (C.G.), India.

Submitted Date : 3-06-2015
Accepted Date : 25-09-2015

Abstract

The present study describes the prevalence of extended spectrum b-lactamases (ESBL) producing E. coli in raw chevon, milk and human samples in different districts of Chhattisgarh state. A total of 330 samples comprising of chevon (n=126), raw milk (n=104), human urine and stool (n=100) were collected from Bilaspur, Durg, Raipur, Rajnandgaon and Dhamtari districts of Chhattisgarh and processed for isolation of E. coli. The biochemically confirmed E. coli isolates were further screened of for the presence of blaTEM gene by PCR amplification. Analysis of samples indicated an overall prevalence of 31.52%. The highest prevalence of E. coli was recorded in fresh chevon samples (38.09%) followed by human urine samples (37.14%), human stool samples (30%) followed by milk samples (20.19%). In –vitro antibiotic sensitivity test of E. coli isolates revealed that all isolates to be highly sensitive towards imipenem, gentamicin, ciprofloxacin, amoxyclav, ampicillin, oxytetracyclin. The highest numbers of E. coli isolates were found resistant to erythromycin, cefotaxim, ceftazidime, cephalexin and cifixime. The 49 E. coli isolates were found to have Multiple Antibiotic Resistance (MAR) index more than 0.2, thus indicating indiscriminate use of antimicrobials. The 44 (42.3%) isolates were identified as presumptive ESBL producers and out of them 39.4% isolates were found to harbour the blaTEM gene on their plasmid DNA indicating the presence of multidrug resistant ESBL producing E. coli in foods of animal origin and human samples.

Keywords

blaTEM E. coli Extended-spectrum b-lactamases Foods of animal origin Prevalence Human Molecular characterization.

References

  1. Akram, A., Shahid, M. and Khan, A. U. (2007). Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in JNMC Hospital Aligarh, India. Ann. Clin. Microbiol. Antimicrob., 6: 4-10.
  2. Ali, N. H., Farooqui, A., Khan, A., Khan, A. Y. and Kazimi, S. U. (2010). Microbial contamination of raw meat and its environment in retail shop in Karachi, Pakistan. J. Infect. Dev ctries, 4: 382-388.
  3. Amin, A. and Borah, P. (2002). Bacteriological quality of goat meat marketed in Guwahati city. Indian Vet. J., 79: 944-947.
  4. Carattoli, A., Lovari, S., Franco, A., Cordaro, G., Di Matteo, P. and Battisti, A. (2005). Extended- spectrum beta-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob. Agents Chemother., 49: 833-835.
  5. CDC. (2010). Healthcare Associated Infection: Laboratory Detection of Extended-Spectrum b-Lactamases (ESBLs). Centers for Disease Control and Prevention, Atlanta.
  6. Chaubey, H., Purohit, S. K., Joshi, R., Joshi, V. and Chaudhary, V. (2004). Bacteriological quality of market raw goat meat and its public health importance. J. Vet. Pub. Hlth., 2: 59-61.
  7. Cheesbrough, M. (2006). District laboratory practice in tropical countries, Part-2, Newyork, USA: Cambridge University. 184-186.
  8. CLSI. (2010). Performance Standards for Antimicrobial Susceptibility Testing. 18th Informational Supplement. M100-    S18. Clinical and Laboratory Standards Institute, Wayne, P.A.
  9. Gangil, R., Patyal, A. and Mathur, K. N. (2011). Microbiological quality of marketable raw goat meat in Jaipur city and its public health significance. J. Vet. Pub. Hlth., 9: 63-64.
  10. Geser, N., Stephan, R. and Hachler, H. (2012). Occurrence and characteristics of extendedspectrum b-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res., 8: 21.
  11. Gundogan, N. and Avci, E. (2013). Prevalence and antibiotic resistance of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella species isolated from foods of animal origin in Turkey. Afr. J. Microbiol. Res., 7: 4059-4064. 
  12. Gundogan, N. and Yakar, U. (2007). Siderophore production, serum resistance, hemolytic activity and extended spectrum beta lactamase-producing Klebsiella species isolated from milk and milk products. J. Food Saf., 3: 251-260.
  13. Haryani, Y., Noorzaleha, A.S., Fatimah, A.B., Noorjahan, B.A., Patrick, G.B., Shamsinar, A.T. , Laila, R.A.S. and Son, R. (2007). Incidence of Klebsiella pneumonia in street foods sold Malaysia and their characterization by antibiotic resistance, plasmid profiling, and RAPD-PCR analysis. Food Cont., 18: 847-853.
  14. Horton, R.A., Randall, L.P., Snary, E.L., Cockrem, H., Lotz, S., Wearing, H., Duncan, D., Rabie, A., McLaren, I., Watson, E., La Ragione, R.M. and Coldham, N.G. (2011). Fecal carriage and shedding density of CTX-M extendedspectrum-    lactamase-producing Escherichia coli in cattle, chickens, and pigs: implications for environmental contamination and food production. Appl. Environ. Microbiol., 77: 3715-3719.
  15. Ibrahim, M. E., Bilal, N. E. and Hamid, M. E. (2012). Increased multi-drug resistant Escherichia coli from hospitals in Khartoum state, Sudan. Afr. Health Sci., 12: 368-375. 
  16. Jaulkar, A. D., Zade, N. N., Katre, D. D., Khan, W. A., Chaudhari, S. P. and Shinde, S. V. (2011). Plasmid Characterization of Salmonella Isolated from Foods of Animal Origin. J. Vet. Pub. Hlth., 9: 25-28.
  17. Khater, E. S. and Sherif, H.W. (2014). Rapid Detection of Extended Spectrum B-lactamase (ESBL) Producing Strain of Escherichia coli in Urinary Tract Infections Patients in Benha University Hospital, Egypt. Br. Microbiol. Res. J., 4: 443-453.
  18. Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of faecal contamination of foods. Appl. Environ. Microbiol., 46: 165-170.
  19. Kumar, A., Verma, A. K., Malik, S., Gupta, M. K., Sharma, A. and Rahal, A. (2014). Occurrence of extended spectrum beta-lactamases producing alpha hemolytic Escherichia coli in neonatal diarrhea. Pak. J. Biol. Sci., 17: 109-113.
  20. Lanjewar, M., De, A. S. and Mathur, M. (2010). Diarrheagenic E. coli in hospitalized patients: special reference to Shiga-    like toxin producing Escherichia coli. Indian J. Pathol. Microbiol., 53: 75-78.
  21. Manikandan, C. and Amsath, A. (2014). Antibiotic susceptibility pattern of Escherichia coli isolated from urine samples in Pattukkottai, Tamilnadu. Int. J. Curr. Microbiol. App. Sci., 3: 449-457.
  22. Manoharan, A., Premalatha, K., Chatterjee, S., Mathai, D. and SARI Study group. (2011). Correlation of TEM, SHV and CTX-M extended-spectrum beta lactamases among Enterobacteriaceae with their in vitro antimicrobial susceptibility. Indian J. Med. Microbiol., 29: 161-164.
  23. Overdevest, I., Willemsen, I., Rijnsburger, M., Eustace, A., Xu, L., Hawkey, P., Heck, M., Savelkoul, P., Vandenbroucke Grauls, C., Van der Zwaluw, K., Huijsdens, X. and Kluytmans, J. (2011). Extended-spectrum b-lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Em. Infect. Dis., 17: 1216-1222.
  24. Pitout, J.D., Gregson, D.B., Campbell, L. and Laupland, K.B. (2009). Molecular characteristics of extended-spectrum-    beta-lactamase-producing Escherichia coli isolates causing bacteraemia in the Calgary Health Region from 2000 to 2007: emergence of clone ST131 as a cause of community acquired infections. Antimicrob. Agents Chemother., 53: 2846-2851.
  25. Rasheed, M. U., Thajuddin, N., Ahamed, P., Teklemariam, Z. and Jamil, K. (2014). Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev. Inst. Med. Trop. Sao Paulo, 56: 341-346.
  26. Rashid, M., Kotwal, S. K., Malik, M. A. and Singh, M. (2013). Prevalence, genetic profile of virulence determinants and multidrug resistance of Escherichia coli isolates from foods of animal origin. Vet. World, 10:139-142.
  27. Reuben, C. R., Okolocha, E. C., Bello, M. and Tanimu, H. (2013). Occurrence and Antibiogram of Escherichia coli O157:H7 in locally fermented milk (Nono) sold under market conditions in Nasarawa State, Nigeria. Int. J. Sci. Res., 2: 591-598.
  28. Shafiyabi, S., Krishna, S., Jeer, Pavithra, M. and Divya. (2014). Trends in antibiotic resistance pattern among Escherichia coli isolates from patients with urinary tract infection in tertiary care hospital, Bellary. Int. J. Pharm. Sci. Rev. Res., 24: 43-49.
  29. Sharma, J., Sharma, M. and Ray, P. (2010). Detection of TEM and SHV genes in Escherichia coli and Klebsiella pneumoniae isolates in a tertiary care hospital from India. Indian. J. Med. Res., 132: 332-336.
  30. Thaker, H. C., Brahmbhatt, M. N. and Nayak, J. B. (2012). Study on occurrence and antibiogram pattern of Escherichia coli from raw milk samples in Anand, Gujrat, India. Vet. World, 5: 556-559.
  31. Todar, K. (2012). Bacterial Resistance to Antibiotics. The Microbial World. Lectures in Microbiology, University of Wisconsin-Madison.
  32. Von Baum, H. and Marre, R. (2005). Antimicrobial resistance of Escherichia coli and therapeutic implications. Int. J. Med. Microbiol., 295: 503–511.
     

Global Footprints