Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 50 issue 3 (june 2016) : 324-329

Protective role of garlic against malathion induced oxidative stress in male albino rats

Gamila A.M. Kotb1, 2, Farag A.A. Gh 3, Kholoud S Ramadan*4, Hoda E.A. Farid4, 5
1<p>Department of Biochemistry, Faculty of Science-Al Faisaliah Campus,&nbsp;King Abdulaziz University, Jeddah, Saudi Arabia.</p>
Cite article:- Kotb1 A.M. Gamila, 2, 3 Gh A.A. Farag, Ramadan*4 S Kholoud, Farid4 E.A. Hoda, 5 (NaN). Protective role of garlic against malathion induced oxidativestress in male albino rats . Indian Journal of Animal Research. 50(3): 324-329. doi: 10.18805/ijar.10712.

The garlic has been widely used as medicinal plant for its therapeutic properties This  study was aimed to investigate the antioxidant role of garlic (G) against oxidative stress induced by  malathion (M) in male albino rats. After experimental period (28 days), the study investigated some biochemical parameters and oxidative stress markers in plasma rats.  The results revealed that, malathion induced significant increase in plasma Tri-iodothyronine (T3), Thyroxin (T4),  glucose values and malondialdehyde (MDA) as oxidative stress marker was noticed. However, significant decrease was recorded in cholesterol, total protein (T. Protein) contents and  in defense system biomarker total SH- protein. Acetylcholinesterase (AChE) activity  was inhibited by malathion treatment and cause alteration in non-specific esterase and protein pattern. Finally, these results concluded that garlic has significant protection against malathion intoxication demonstrated inhibition in acetyl cholinesterase (AChE) activity and reduced in cholesterol, T. protein  and total SH- protein. Further studies are necessary to investigate the significant effect of garlic on thyroid gland, brain and neurotransmitters.


  1. Abdollahi, M., Mostafalou, S., Pournourmohammadi, S. and Shadnia, S. (2004). Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to malathion. Comp Biochem Physiol C Toxicol Pharmacol., 137: 29-34.

  2. Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S. and Itakura, Y. (2001). Intake of Garlic and its bioactive components. Journal of Nutrition, 131: 955S - 962S.

  3. Anil, K. B., Manju, B., Giridhar, S. and Deepak, B. (2005). Protective role of Vitamin E pre-treatment on N-    nitrosodiethylamine induced oxidative stress in rat liver. Chem. Biol. Interact. 20:101-102 

  4. Banerjee, B., Seth, D. V. and Ahmed, R. S. (2001). Pesticide-Induced Oxidative Stress: Perspectives and Trends. Rev Env Health. 16: 1- 40. 

  5. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248 - 254.

  6. Britton, K. E., Quinn, V., Brown, B. L. and Ekins, R. P. (1975). A strategy for thyroid function tests. British Med. J., 3: 350 -352. 

  7. Ceron, C. R. (1988). Padrao de esterases no desenvolvimento de Drosophila mulleri, D. arizonensis e seus hibridos. Doctoral Thesis, Instituto de Biociências, Universidade de Sao Paulo, 142 p.

  8. Charles, A., Lucy, S. P., Cicely, S. G., Richmond, W. and Paul, C. F. (1974). Enzymatic determination of total serum cholesterol. Clin. Chem., 20: 470-475.

  9. Coban, F. K., Ince, S., Kucukkurt, I., Demirel, H. H. and Hazman, O. (2014). Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug and chemical Toxicology. 24: 1-9.

  10. Darham, B. and Trinder, P. (1972). An improved color reagent for determination of blood glucose by the oxidase system. Analyst. 97: 142-145.

  11. Desai, S. N. and Desai, P. V. (2008). Changes in renal clearance and renal tubular function in albino mice under the influence of Dichlorofos. Pestic. Biochem. Physiol. 91: 160–169.

  12. Eidi, A. and Esmaeili, E. (2006). Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin induced diabetic rats. Phytomedicine. 13:624-629.

  13. Elhalwagy, M. E.A. and Zaki, N. I. (2009). Comparative study on pesticide mixture of Organophosphorous and pyrethroid in commercial formulation. Environ. Toxicol. Pharmacol. 28: 219-24.

  14. Ellman, G. L., Couriney, K. D., Andres, V. J. and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetyl cholinesterase activity. Biochem. Pharmacol. 7: 88 - 95. 

  15. El-Said, M. M., Gado, A. M. and Farid, M. M. (2000). Indices of thyroid function state in albino rats following administration of fenvalerate and thiobicarb insecticides J. Egypt. Vet. Med. Asso. 61:105-115.

  16. El-Zayat, E. M. (2008). Protective role of lipoic acid against acute parquet induced oxidative stress changes in serum isozyme and protein patterns in female albino rats. Res. J. Environ. Toxicol. 2: 53–66. 

  17. Ezeala, C., Nweke, I., Unekwe, P., El-Safty, I. and Nwaegerue, E. (2009). Fresh garlic extract protects the liver against acetaminophen-induced toxicity. The Internet Journal of Nutrition and Wellness. 7: 1-7.

  18. Hassan -Hanaa, A., M. El-Agmy, S., Gaur, R. L., Fernando, A., Raj, A. M. H. and Ouhtit, A. (2009). In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. Int J Biol. Sci., 5: 249 – 255.

  19. Hu, M. L. and Dillard, C. J. (1994). Plasma SH and GSH measurement. Method of Enzymology. 233: 385-387. 

  20. Kalantari, H. and Salehi, M. (2001). The protective effect of garlic oil on hepatotoxicity induced by acetaminophen in mice and comparison with N-acetylcysteine. Saudi Med J., 22: 1080 – 1084. 

  21. Kehrer, J. P. (1993). Free radicals as mediators in tissue injury and disease. Crit. Rev. Toxicol. 23: 21- 48.

  22. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

  23. Maxwell, D. M. (1992). The specificity of carboxylesterase protection against the toxicity of organophosphate compounds. Toxicol. Appl. Pharmacol. 114: 306–312.

  24. Malik, J. K. and Summer, K. H. (1982). Toxicity and metabolism of malathion and it’s impurities in isolated rat hepatocytes: Role of glutathione. Toxicol. Appli Pharmacol. 66: 69-76.

  25. OCED (Organization for Economic cooperation and development) 1992: Chairman’s report of the meeting of the ad hoc working group of experts on systemic short term and (delayed) neurotoxicity. 

  26. Okhawa, H. N. Ohishi. and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95: 351-358.

  27. Paget, G. E. and Barnes, J. M. (1964). In: “Toxicity Tests” vol. (1) [Laurence, D.R. and Bacharach A.L. eds] Academic press, London and New York, 135-166.

  28. Pinto, J. T. and Rivlin, R. S. (2001). Antiproliferative effects of Allium derivatives from garlic. J. Nutr., 131: 1058 – 1060.

  29. Ranjbar, A., Pasalar, P. and Abdollahi, M. (2002). Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum Exp Toxicol, 21: 179–82.

  30. Schalm, O. W. (1986). VeterinaryHematology, fourth ed. Lea and Febiiger, Philadelphia, pp. 21-36.

  31. Silman, I. and Sussman, I. J. (2005). Acetylcholinesterase: classical, and non classical function and pharmacology. Current Opinion in Pharmacology. 5:293-302.

  32. Sweeny R. E. and Maxwell, D. M. (2003). A theoretical expression for the protection associated with stoichiometric and catalytic scavengers in a single compartment organophosphorous poisoning. Math. Biosci., 160: 175-190. 

  33. Van Asperen, K. (1962). A study of housefly esterases by means of sensitive colorimetric methods. J. Insect Physiol. 8: 401– 416.

  34. Wheelock, C. E., Miller, J. L., Miller, M. G., Shan, G., Gee, S. J. and Hammock, B. D. (2004). Development of toxicity identification evaluation (TIE) procedures for pyrethroid detection using esterase activity. Environ. Toxicol. Chem. 11: 2699 –2708.

  35. Younes, M. (1999). Free Radicals and Reactive Oxygen Species, in Toxicology. Marguardt, H., Schafer, SG, McClellan, R and Welsch, F (eds). Academic Press. NY., 111 - 125.

  36. Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139 – 162.

  37. Zbignier, A., Kazimierz, Z., Katarzyna, F., Radoslav, V. and Andra, T. (2003). Effects of long-term exposure to fenitrothion on Spodoptera exigua and Tenebrio molitor larval development and antioxidant enzyme activity. Biol. Lett. 40: 43- 52.

     

Editorial Board

View all (0)