Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 50 issue 3 (june 2016) : 349-356

Fecundity gene SNPS as informative markers for assessment of Indian goat genetic architecture 

A. Maitra, Rekha Sharma*, Sonika Ahlawat, K. Borana, M.S. Tantia
1<p>National Bureau of Animal Genetic Resource, Karnal-132 001, India&nbsp;</p>
Cite article:- Maitra A., Sharma* Rekha, Ahlawat Sonika, Borana K., Tantia M.S. (2015). Fecundity gene SNPS as informative markers for assessment of Indian goat genetic architecture . Indian Journal of Animal Research. 50(3): 349-356. doi: 10.18805/ijar.6708.

Single nucleotide polymorphisms (SNPs) are the most abundant form of DNA polymorphismwhich can be used as simple genetic markers for many breeding applications as well as for population studies. SNPs in fecundity (Fec) genes viz. BMPR1B, GDF9 and BMP15 were genotyped in Indian goat breeds to assess their basic population parameters and genetic structuring, using simple and economical methods of PCR-RFLP and Tetra-primer ARMS PCR. Three hundred and ninety one animals of seven different goat breeds differing in prolificacy, utility and geographic distribution were employed for diversity assessment at six loci in these Fec genes. Four loci were polymorphic in all the breeds with varied allelic frequencies. Statistical analysis revealed that breeds differed with respect to genetic variability as observed heterozygosity varied from 0.163 (Ganjam) to 0.359 (Jakhrana). Sangamneri and Osmanabadi were least differentiated (0.003) whereas Jakhrana and Black Bengal were most differentiated (0.048) on the basis of genetic distance. The genetic distance as well as PCA analysis indicated that breeds are grouped according to their geographical distribution. The genetic diversity based on fecundity genes presented here is an essential step towards the future exploitation of the available goat genetic resources in research and breeding programs.


  1. Acharya, R.M.(1982). Sheep and goat breeds of India. In: F.A.O. Animal Production and Health Paper, No. 30. F.A.O., Rome.

  2. Ahlawat, S., Sharma, R. and Maitra,A.(2013). Screening of indigenous goats for prolificacy associated DNA markers of sheep. Gene 517: 128-131.

  3. Ahlawat, S., Sharma, R., Maitra, A., Tantia, M.S., Roy, M. and Mandakmale, S.(2014). New genetic polymorphisms in Indian goat BMPR1B gene. Indian J Anim Sci. 84(1): 39-44.

  4. Cappuccio, I., Pariset, L., Ajmone-Marsan, P., Dunner, S., Cortes, O., Erhardt, G., Lühken, G., Gutscher, K., Joost, S. and Nijman, I.J.(2006). Allele frequencies and diversity parameters of 27 single nucleotide polymorphisms within and across goat breeds. Mol Ecol Notes 6(4):992-997. 

  5. Di, R., Yin, J., Chu, M.X., Cao, G.L., Feng, T., Fang, L. and Zhou, Z.X.(2011). DNA polymorphism of introns 1 and 2 of Prolactin Receptor Gene and its association with litter size in goats. Anim Sci Pap Rep. 29 (4): 343-350.

  6. Dixit, S.P., Verma, N.K., Aggarwal, R.A.K., Vyas, M.K., Rana, J. and Sharma, A.(2012). Genetic diversity and relationship among Indian goat breeds based on microsatellite markers. Small Ruminant Res 105: 38-45.

  7. Feng, T., Geng, C.X., Lang, X.Z., Chu, M.X., Cao, G.L., Fang, L., Chen, H.Q., Liu, X.L. and Li, N.(2010). Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Mol Biol Rep DOI 10.1007/    s11033-010-0669-y.

  8. Flury, C.M., Tapio, T., Sonstegard, C., Drogemuller, T., Leeb, H., Simianer, O.H. and Rieder,S.(2010). Effective population size of an indigenous Swiss cattle breed estimated from linkage disequilibrium. J AnimBreed Genet 127: 339-347.

  9. Galloway, S.M., McNatty, K.P., Cambridge, L.M., Laitinen, M.P.E., Juengel, J.L., Jokiranta, T.S., McLaren, R.J., Luiro, K., Dodds, K.G., Montgomery, G.W., Beattie, A.E., Davis, G.H. and Ritvos, O.(2000). Mutations in an oocyte derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25: 279-283.

  10. Gandini, G.C. and Villa, E.(2003). Analysis of the cultural value of local livestock breeds: a methodology. J Anim Breed Genet 120: 1-11. 

  11. Ghaffari, M., Nejati-Javaremi, A. and Rahimi, G.(2009). Detection of polymorphism in BMPR-IB gene associated with twining in Shal sheep using PCR-RFLP method. Int J Agric Biol.11: 97-99.

  12. Hanrahan, J.P., Gregan, S.M., Mulsant, P., Mullen, M., Davis, G.H., Powell, R. and Galloway, S.M.(2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 70: 900-909.

  13. Hoda, A., Dobi, P. and Hyka, G.(2009). Genetic diversity and distances of Albanian local sheep breeds using microsatellite markers. Livestock Res Rural Dev. 21: 93.

  14. Joshi, M.B., Rout, P.K., Mandal, A., Singh, L. and Thangaraj, K.(2004). Phylogeography and origin of Indian domestic goats. Mol. Biol. Evol. 21: 454-462.

  15. Kijas, J.W., Townley, D., Dalrymple, B.P., Heaton, M.P., Maddox, J.F., McGrath, A., Wilson, P., Ingersoll, R.G., McCulloch, R., McWilliam, S., Tang, D., McEwan, J., Cockett, N., Oddy, V.H. Nicholas, F.W. and Raadsma, H.(2009). A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds. PLoS ONE 4: e4668.

  16. Krebs, C.J.(1989). Ecological methodology. Harper Collins. New York, New York, USA. 

  17. Livestock Census.(2012). Department of Animal Husbandry, Dairying & Fisheries, Ministry of Agriculture, Government of India.

  18. Muir, W.M., Wong, G.K.S., Zhang, Y., Wang, J., Groenen, M.A.M., Crooijmans, R., Megens, H.J., Zhang, H., Okimoto, R., Vereijken, A., Jungerius, A., Albers, G.A.A., Lawley, C.T., Delany, M.E., MacEachern, S. and Cheng, H.H.(2008). Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. P Natl Acad Sci USA. 105: 17312-17317.

  19. Nei, M.(1987). Molecular evolutionary genetics. Columbia University Press, New York, USA. 

  20. Otsuka, F., McTavish, K.J. and Shimasaki, S.(2011). Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev. 78: 9-21.

  21. Peakall, R. and Smouse, P.E.(2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 28: 2537-2539.

  22. Sambrook, J., Fritsch, E.F. and Maniatis, T.(1989). Molecular cloning: a laboratory manual. Cold Spring Harbour, NY: Cold Spring Harbour Lab. Press.

  23. Sharma, R., Maitra, A., Singh, P.K. and Tantia, M.S.(2013). Genetic diversity and relationship of cattle populations of East India: distinguishing lesser known cattle populations and established breeds based on STR markers. Springer Plus 4: 359. doi: 10.1186/2193-1801-2-359.

  24. Silió, L., Fernández, A., Mercadé, A., Martin-Palomino, P., López, M.A., Rodrigáñez, J. and Ovilo, C.(2010). Measuring inbreeding in a closed pig strain from high-density SNPs genotypes. In: Proceedings of the 9th World Congress Genetics Applied Livestock Production Congress. Leipzig, Germany, 1-6 August 2010.

  25. Solis, A., Jugo, B.M., Meriaux, J.C., Iriando, M., Mazon, L.I., Aguirre, A.I., Vicario, A. and Estomba, A. (2005). Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis: implications for Conservation. J Hered. 96: 670-678.

  26. Souza, C.J., MacDougall, C., Campbell, B.K., McNeilly, A.S. and Baird, D.T.(2001). The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1B (BMPRIB) gene. J Endocrinol. 169(2): R1-R6.

  27. Takezaki, N. and Nei, M.(1996). Genetic distances and reconstruction of phylogenetic tree from microsatellite DNA. Genetics. 144: 389-399.

  28. Tapio, M., Ozerov, M., Tapio, I., Toro, M.A., Marzanov, N., Cinkulov, M., Goncharenko, G., Kiselyova, T., Murawski, M. andKantanen, J.(2010). Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia. BMC Genet. 11: 76. doi: 10.1186/1471-2156-11-76.

  29. Vicente, A.A., Carolino, M.I., Sousa, M.C.O., Ginja, C., Silva, F.S., Martinez, A.M., Vega-Pla, J.L., Carolino, N. and Gama, L.T.(2008). Genetic diversity in native and commercial breeds of pigs in Portugal assessed by microsatellites. J Anim Sci 86: 2496-2507.

  30. Ye, S., Dhillon, S., Ke, X., Collins, A.R. and Day, I.N.(2001). An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29: e88.

  31. Yeh, F.C., Yang, R.C. and Boyle, T.(1999). POPGENE version 1.32: Microsoft Windows–based freeware for population genetic analysis, quick user guide. Center for International Forestry Research, University of Alberta, Edmonton, Alberta, Canada.

  32. Zenger, K.R., Khatkar, M.S., Cavanagh, J.AL., Hawken, R.J. and Raadsma, H.W.(2007). Genome-wide genetic diversity of Holstein Friesian cattle reveals new insights into Australian and global population variability, including impact of selection. Anim Genet. 38: 7-14.

Editorial Board

View all (0)