Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.44

  • SJR .282 (2022)

  • Impact Factor .427 (2022)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus

Genetic analysis of glycosylation sites, TM 8 and consensus transport motif of buffalo SLC11A1 gene 

Indrajit Ganguly*, Arjava Sharma, Abhijit Mitra, Anita Ganguly, Nishant Kumar
  • Email
1<p>Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, Bareilly-243 122, India&nbsp;</p>
Cite article:- Ganguly* Indrajit, Sharma Arjava, Mitra Abhijit, Ganguly Anita, Kumar Nishant (2015). Genetic analysis of glycosylation sites, TM 8 and consensus transport motif of buffalo SLC11A1 gene . Indian Journal of Animal Research. 50(3): 300-304. doi: 10.18805/ijar.6707.

The present study aimed to explore polymorphisms at exon X-XI, encompassing two potential N-linked Glycosylation sites (GLY, GLY), complete transmembrane domain 8 (TM8) and one conserved ‘Consensus Transport Motif’ (CTM) of buffalo (Bubalus bubalis) SLC11A1 (formerly NRAMP1) gene by PCR-RFLP and automated DNA sequencing. PCR–RFLP genotyping of animals (n=150) from three Indian buffalo breeds viz., Murrah, Surti, and Mehsana by Alu I, Taq I, Hae III, Rsa I, Pst I and Mva I reveals monomorphic pattern. Sequence comparisons demonstrate no change at nucleotide level among the buffalo breeds. However, results of this study show three nucleotide changes in buffaloes as compared to that of B taurus (NM_174652): one transition (CT at amino acid position 349) and two transversion (CA at amino acid position 321 and CG at amino acid position 356). Transversion CA and CG, resulting in deduced amino acid exchange Asp321 –Glu321 and Pro356 – Ala356, respectively has been identified. The non-synonymous single nucleotide variation (nsSNV) (CA at amino acid position 321), observed in all the three buffalo breeds under study, leads to the loss of a potential N-glycosylation motif of SLC11A1 gene and therefore may alter the property of the protein. A comprehensive study of this N-glycosylation motif of SLC11A1 gene in different species followed by structural analysis of the protein is required to better understand the functional impact of nsSNV.

  1. Abel, L., Sanchez F.O., Oberti J., Thuc N.V., Hoa L.V., Lap V.L., Skamene E., Lagrange P.H. and Schurr E. (1998). Susceptibility to leprosy is linked to the human NRAMP1 gene. J. Infect. Dis., 177: 133-145.

  2. Adams, L.G and Templeton J.W. (1998). Genetic resistance to bacterial diseases of animals. Rev. Sci. Tech., 17: 200-219.

  3. Awomoyi, A.A. (2007). The human solute carrier family 11 member 1 protein (SLC11A1): linking infections, autoimmunity and cancer? FEMS Immunol. Med. Microbiol., 49:324-329.

  4. Blackwell, J.M., Searle S., Goswami T. and Miller E.N.( 2000). Understanding the multiple functions of Nramp1. Microbes Infect., 2:317-321.

  5. Boscher, C., Dennis J.W. and Nabi I.R. ( 2011). Glycosylation, galectins and cellular signaling. Curr. Opin. Cell. Biol., 23: 383–392.

  6. Coussens, P. M., Coussens M. J., Tooker B. C. and Nobis W. P. (2004). Structure of the bovine natural resistance associated macrophage protein (NRAMP 1) gene and identification of a novel polymorphism. DNA Seq., 15:15-25

  7. Crocker, P.R. (2002). Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol., 12: 609–615.

  8. Dall’olio, F. (1996). Protein glycosylation in cancer biology: an overview. Clin. Mol. Pathol., 49: M126–M135.

  9. Drickamer, K. and Taylor M.E. (1993). Biology of animal lectins. Annu. Rev. Cell Biol., 9: 237–264.

  10. Dwek, R.A. (1996). Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev., 96: 683–720.

  11. Ganguly, I., Sharma A., Mitra A., Kumar N. and Ganguly A. (2011). Analysis of genetic variations of complete TM4 of buffalo (Bubalus bubalis) Slc11A1 gene. J. Appl. Anim. Res., 39: 324-327.

  12. Ganguly, I., Sharma A., Singh R., Deb S.M., Singh D.K. and Mitra A. (2008). Association of microsatellite (GT)n polymorphism at 3’UTR of NRAMP1 with the macrophage function following challenge with Brucella LPS in buffalo (Bubalus bubalis).Vet. Microbiol., 129:188-196.

  13. Gomez, M.A., Li S., Tremblay M. L. and Olivier M. (2007). NRAMP-1 Expression modulates protein-tyrosine phosphatase activity in macrophages impact on host cell signaling and functions. J. Biol. Chem., 282:36190-36198.

  14. Gruenheid, S., Pinner E., Desjardinsand M. and Gros P. (1997). Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J. Exp. Med., 185:717-730.

  15. Hart, G.W. (1992). Glycosylation. Curr. Opin. Cell. Biol., 4: 1017–1023

  16. Horin, P. and Matiasovic J. (2000). Two polymorphic markers for the horse SLC11A1 (NRAMP1) gene. Anim. Genet., 31:152. 

  17. Jin, J., Sun L., Jiao W., Zhao S., Li H., Guan X., Jiao A., Jiang Z. and Shen A. (2009). SLC11A1 (Formerly NRAMP1) Gene Polymorphisms Associated with Pediatric Tuberculosis in China. Clin. Infect. Dis., 48: 733-738.

  18. Kumar, N., Ganguly I., Singh R., Deb S. M., Kumar S. and Sharma A. (2011). DNA Polymorphism in SLC11A1 Gene and its Association with Brucellosis Resistance in Indian Zebu (Bos indicus) and Crossbred (Bos indicus×Bos taurus) Cattle. Asian-Aust. J. Anim. Sci., 24: 898 – 904.

  19. Lasky, L.A. (1995). Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem., 64: 113–139.

  20. Lis, H. and Sharon N. (1998). Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev., 98: 637–674.

  21. Marino, K., Bones J., Kattla J.J. and Rudd P.M. (2010). A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol., 6: 713–723.

  22. Martinez, R., Toro R., Montoya F., Burbano M., Tobón J., Gallego J., Dunner S. and Cañón J. (2008). Bovine SLC11A1 3' UTR SSCP genotype evaluated by a macrophage in vitro killing assay employing a Brucella abortus strain. J. Anim. Breed. Genet., 125: 271-9.

  23. Matthews, G.D. and Crawford A.M. (1998). Cloning, sequencing and linkage mapping of the NRAMP1 gene of sheep and deer. Anim. Genet., 29: 1-6. 

  24. Peracaula, R., Barrabes S., Sarrats A., Rudd P.M., de Llorens R. (2008). Altered glycosylation in tumours focused to cancer diagnosis. Dis. Markers 25: 207–218

  25. Sambrook, J., Fritsch E.F. and Maniatis T. (1989) Molecular cloning: a laboratory Manual, vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  26. Zhang, G., Wu H., Ross C.R., Minton J.E. and Blecha F. (2000). Cloning of porcine NRAMP1 and its induction by lipopolysaccharide, tumor necrosis factor alpha, and interleukin-1beta: role of CD14 and mitogen-activated protein kinases. Infect. Immun., 68:1086-93.

Editorial Board

View all (0)