Indian Journal of Animal Research

  • Chief EditorM. R. Saseendranath

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.40

  • SJR 0.233, CiteScore: 0.606

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 50 issue 2 (april 2016) : 160-163

Genotyping of b-Lactoglobulin (-Lg) gene by PCR-RFLP in indigenous cattle of Assam, India

Irin Jebin, Bula Das*, P. Borah, D.J. Kalita, T.C. Roy, G.U. Zaman, Md. Iftikar Hussain
Cite article:- Jebin Irin, Das* Bula, Borah P., Kalita D.J., Roy T.C., Zaman G.U., Hussain Iftikar Md. (NaN). Genotyping of b-Lactoglobulin (-Lg) gene by PCR-RFLP in indigenous cattle of Assam, India . Indian Journal of Animal Research. 50(2): 160-163. doi: 10.18805/ijar.6693.

The study was conducted to investigate the polymorphism in -Lactoglobulin (-Lg) gene in indigenous cattle of Assam. Genomic DNA from 53 indigenous cattle was extracted and used to study the polymorphism in -Lg gene using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique. Genetic improvement by selective breeding provides enormous potential to enhance the performance of animals. But, it is a time-consuming exercise as generation interval of cattle is longer. Besides, milk production being a sex limited trait, it is not possible to select male animal on the basis of its own performance. To minimize these problems, selection based on markers can play an important role to carry out genetic improvement of animals before expressing actual target traits. A PCR product of 262 bp obtained upon amplification was subsequently digested with restriction endonuclease BSuRI and yielded three types of restriction pattern, two fragments (153 and 109 bp) for AA genotype, three fragments (109, 79 and 74 bp) for BB genotype and, four fragments (153, 109, 79 and 74 bp) for AB genotype. The frequencies of alleles A and B were found to be 0.2547 and 0.7453 and those of AA, AB and BB genotypes were 0.0943, 0.3207 and 0.5849, respectively. From the present study it could be concluded that the -Lg B variant was predominant in the indigenous cattle with the highest frequency of BB homozygote followed by AB heterozygote (BB>AB>AA) and Chi-square (x2) test revealed that the population under study was in Hardy-Weinberg Equilibrium.


  1. Aleandri, R., Butazzoni, L.G., Schneider, J.C., Caroli, A. and Davali, R. (1990). The effects of milk protein polymorphisms on milk components and cheese-producing ability. J. Dairy Sci., 73 : 241-255.

  2. Badola, S., Bhattacharya, T. K., Biswas, T. K., Kumar, P. and Sharma, A. (2003). Association of b-Lactoglobulin polymorphism with milk production traits in cattle. Asian-Aust. J. Anim. Sci., 16 (11) : 1560-1564.

  3. Badola, S., Bhattacharya, T. K., Biswas, T. K., Shivakumar, B. M., Kumar, P. and Sharma, A. (2004). A comparison on polymorphism of Beta-Lactoglobulin gene in Bos indicus, Bos Taurus and Indicine X Taurine crossbred cattle. Asian-Aust. J. Anim. Sci., 17 (6) : 733-736.

  4. Bhattacharya, T.K. and Gandhi, R.S. (1997). Marker assisted selection (MAS) and its application in dairy cattle. Indian Dairyman., 49 : 39-45. 

  5. Chianese, L., Di Luccia, A., Mauriello, R., Ferrara, L., Zehender, G. and Addeo, F. (1988). Polimorfismo biochimico delle proteine del latte in bovine di razza Podolica. Zoot. Nutr. Anim., 14 : 189-197.

  6. Del Lama, S.N. and Zago, M.A. (1996). Identification of the k-Casein and b- Lactoglobulin genotypes in Brazilian Bos indicus and Bubalus bubalis populations. Brazilian J. Genet., 19 (1) : 73-77.

  7. Doosti, A., Arshi, A., Yaraghi, M. and Dayani-Nia, M. (2011b). Comparative study of b-Lactoglobulin gene polymorphism in Holstein and Iranian native cattle. J. Cell and Anim. Biol., 5 (3) : 53-55.

  8. Eggen, A. and Fries, R. (1995). An integrated cytogenic and meiotic map of the bovine genome. Anim Genet., 26 : 216–236.

  9. Erhardt, G. (1996). Detection of a new ê-Casein variant in the milk of Pinzgauer cattle. Anim. Gen., 27 : 105–107.

  10. Gouda, E.M., Galal, M.K., Wasfy, M.A. and Abdelaziz, S.A. (2011). Phenotypes, genotypes and allele frequencies of Beta-    Lactoglobulin in Egyptian cattle and buffalo. J. Agril. Sci., 3 (4) : 203-210.

  11. Grosclaude, F. (1988). Le polymorphisme génétique des principales lactoprotéines bovines.Relations avec la quantité, la composition et les aptitudes fromagères du lait. INRA Prod. Anim., 1 (1) : 5-17. 

  12. Heidari, M., Azari, M.A., Hasani, S., Khanahmadi, A. and Zerehdaran, S. (2009) Association of genetic variants of b-    Lactoglobulin gene with milk production in a herd and a superior family of Holstein cattle. Iranian J. Biotechnol., 7 (4) : 254-257.

  13. Karimi, K., Nasiri, M.T.B., Fayyazi, J., Mirzadeh, K.H., Roushanfekr, H. (2009). Allele and genotype frequencies of b-    Lactoglobulin gene in Iranian Najdi cattle and buffalo populations using PCR-RFLP. African J. Biotechnol., 8 (15) : 3654-3657.

  14. Lum, L.S., Dovc, P. and Medrano, J.F. (1997). Polymorphisms of Bovine b-Lactoglobulin promoter and differences in the binding affinity of Activator Protein-2 Transcription Factor. J. Dairy Sci., 80 : 1389-1397.

  15. Marziali, A.S. and Ng-Kwai-Hang, K.F. (1986). Effects of milk composition and genetic polymorphism on cheese composition. J. Dairy Sci., 69 : 2533-2542.

  16. Medrano, J.F. and Aguilar-Cordova, E. (1990). Polymerase chain reaction amplification of bovine â-Lactoglobulin genomic sequences and identification of genetic variants by RFLP analysis. Anim. Biotechnol., 1 (1) : 73-77.

  17. Moody, D.E., Pomp, D., Newman, S. and MacNeil, M.D. (1996). Characterization of DNA polymorphisms in three populations of Hereford cattle and their associations with growth and maternal EPD in line 1 Herefords. J. Anim. Sci. 74 : 1784-1793.

  18. Oner, Y., Pullu, M., Akin, O. and Elmaci, C. (2011). Investigation of b-Lactoglobulin (b-Lg) and Bovine Growth Hormone (bGH) gene polymorphisms by using HaeIII and MspI restriction enzymes in Brown Swiss and Holstein breeds reared in Bursa region. Kafkas Univ Vet Fak Derg., 17 (3) : 371-376.

  19. Patel, R.K., Chauhan, J.B., Singh, K.M. and Soni, K.J. (2007). Allelic frequency of Kappa-Casein and Beta-Lactoglobulin in Indian crossbred (Bos taurus X Bos indicus) dairy bulls. Turk. J. Vet. Anim. Sci., 31 (6) : 399-402.

  20. Rachagani, S., Gupta, I.D., Gupta, N. and Gupta, S.C. (2006). Genotyping of â-Lactoglobulin gene by PCR-RFLP in Sahiwal and Tharparkar cattle breeds. BMC Genet. 7 : 31-34.

  21. Remus-Alexandru, V.-B, Georgescu, S.E., Manea, M.A., Dinischiotu, A. and Costache, M. (2010). Analysis of Beta-    Lactoglobulin and Kappa-Casein genotypes in cattle.

  22. Ren, D.-X., Miao, S.-Y., Chen, Y.-L., Zou, C.-X., Liang, X.-W. and Liu, J.-X. (2011). Genotyping of the ê-Casein and â-    Lactoglobulin genes in Chinese Holstein, Jersey and water buffalo by PCR-RFLP. J. Genet., 90 (1) : 1-5.

  23. Sambrook, J. and Russell, D.W. (2001). Molecular Cloning: A laboratory manual, 3rd Edn., Cold Spring Harbor laboratory Press, New York.

  24. Sitkowska, B., Neja, W., Wisniewska, E., Mroczkowski, S. and Sawa, A. (2009). Effect of the polymorphic composite forms of Beta-Lactoglobulin on the milk yield and chemical composition in maximum lactation. J. Cent. Eur. Agric., 10 (3) : 251-254.

  25. Soller, M. and Beckmann, J.S. (1983). Restriction fragment length polymorphism in genetic improvement. Theor. Appl. Genet., 67 : 25-33.

Editorial Board

View all (0)