IN VITRO EVALUATION OF NATURAL AND SYNTHETIC SUBSTRATE FOR BIOFILM FORMATION AND THEIR EFFECT ON WATER QUALITIES

DOI: 10.5958/0976-0555.2014.00036.3    | Article Id: B-2636 | Page : 585-592
Citation :- IN VITRO EVALUATION OF NATURAL AND SYNTHETIC SUBSTRATE FOR BIOFILM FORMATION AND THEIR EFFECT ON WATER QUALITIES.Indian Journal Of Animal Research.2014.(48):585-592
P.K. Pandey*, M.S. Laxmi and Saurav Kumar pkpandey_in@yahoo.co.uk
Address : Aquatic Environment and Health Management Division, Central Institute of Fisheries Education, Mumbai-400 061, India

Abstract

The present study evaluated the natural and synthetic substrate for biofilm formation in in vitro condition and their effect on physico-chemical parameters of water. The four different treatments i.e., control (without substrate), T1 (sugarcane bagasse), T2 (PVC), T3 (coconut husk) and T4 (bamboo strips) as substrates were used for assessment of biofilm formation and heterotrophic bacterial growth. Physico-chemical parameters of water and total platecolonies were estimated at weekly intervals for five weeks. Results of dissolved oxygen, total alkalinity, as well as nutrients like ammonia-nitrogen, nitrate-nitrogen and nitrite-nitrogen showed significant (p

Keywords

Biofilm Heterotrophic bacteria In vitro Sugarcane bagasse Water qualities

References

  1. Anwar, H., Janice, L. S. and Costerton, J. W. (1992). Susceptibility of biofilm cells of Pseudomonas aerugenosato bactericidal action of whole blood and serum. FEMS Microbiology letters., 92: 235–242.
  2. APHA – AWWA - WEP, (1998). Standard methods for examination of water and waste water,(20th eds) American Public Health Association, Washington DC
  3. Brown, C, M., Ellwood, D. C. and Hunter, J. R., (1977). Growth of bacteria at surfaces influence of nutrient limitation.FEMS Microbiol.Lett., 1: 163-166.
  4. Chang, H. T. and Rittman, B. E., (1988). Comparative study of biofilm shear loss on different adsorptive media. J.of Water Pollution and Control Federation., 60: 362-368.
  5. Charaeklis, W C. (1990). Microbial fouling and microbial biofouling Control. In: Characklis, I.G. and Marshall, K. C. (Eds.): Biofilms, John Wile), New York; 523-634.
  6. Costerton, J.W., Irvin, R.T., (1981). The bacterial glycocalyx in nature and disease. Ann. Rev. Microbiol. 35: 299–324.
  7. Delaquis, P. J., Caldwell, D. E., Lawrence, J. R. and McCurdy, A. R., (1989). Detachment of Pseudomonas flourescensfrom biofilms on glass surfaces in response to nutrient stress. Microbial. Ecol., 18: 199-210.
  8. Dewan, S., M. A. Wahab, M. C. M. Beveridge, M. H. Rahman, and B. K. Sarkar. (1991). Food selection, electivity and dietary overlap among planktivorous Chinese and Indian major carp fry and fingerlings grown on extensively managed, rain-fed ponds in Bangladesh. Aquaculture and Fisheries Management 22:227–294.
  9. Diab, S., Cochva, M., Avimelech, Y., Mires, D., and Amit, Y., (1990). Nitrogen transformation in the combined intensive – extensive (CIE) system.Aquacult.Fish.Management., 23(4): 450-468.
  10. Ferguson, R. L., Rublee, P., (1976). Contribution of bacteria to standing crop of coastal plankton.Limnol.Oceanogr. 21: 141–145.
  11. Fletcher, M. and Loeb, G. I., (1979). Influence of substratum characteristics on attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol., 37: 67-72.
  12. Hargreves, A., (1998). Nitrogen biogeochemistry of aquaculture ponds.Aquaculture.,166: 181-212.
  13. Hem, S. and Avit, J. L. B., (1994). First result on ‘acadjaenclos’ as an extensive aquaculture system.(West Africa).Bull. Mar. Sci., 55: 1040-1051.
  14. Huchette, S. M. H. Beveridge, M. C. M., (2003). Technical and economical evaluation of periphyton-based cage culture of tilapia (Oreochromisniloticus) in tropical freshwater cages.Aquaculture, 218: 219-234.
  15. Hunt, S. M., Werner, E. M., Huang, B., Hamilton, M. A. and Stewart, P. S., (2004). Hypothesis for the role of nutrient Starvation in Biofilm Detachment.Appl. Environ. Microbiol., 70(12): 7418–7425
  16. Jha, P., Sarkar, K. and Barat S., (2004). Effect of different application rates of cowdung and poultry excreta on water quality and growth of ornamental carp, Cyprinuscarpiovr. Koi, in concrete tanks.Turkish Journal of fisheries and aquatic Sciences, 4:17-22.
  17. Jhingran, V. G., (1991). Fish culture in fresh water ponds.lnFish and Fisheries of India (ed. Jhingran, V. G.). Hindustan Publ. Corp. Delhi, PP 275-285.
  18. Keshavanath, P., Gangadhar, B., Ramesh, T. J., Van Rooij, J. M., Beveridge, M. C. M., Baird, D. J., Verdegem, M. C. J. and Van Dam, A. A., (2001). Use of artificial substrates to enhance production of freshwater herbivorous fish in pond culture.Aquacul. Res., 32: 189-197.
  19. Keshavanath, P. Gangadhar, B. Ramesh, T. J. Van Dam, A. A. Beveridge, M. C. M. and Verdegem, M. C. J., (2002). The effect of periphyton and supplemental feeding on the production of the indigenous carps Tor khudreeand Labeofimbriatus.Aquaculture., 213: 207-218Khatoon, H., Yusof, F., Banerjee, S., Shariff, M., and Bujang, J. S., (2007). Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds.Aquaculture., 273(4): 470-477.
  20. Kirchman, D. L. and Ducklow, H. W., (1987). Trophic dynamics of particle bound bacteria in pelagic ecosystem, A review. In: Detritus and microbial ecology in aquaculture. ICLARM conference proceedings, ICLARM, Manila, Philippines (ed. Moriarty, D.J. W. and Pullin, R. S. V.). pp. 54-82.
  21. Langis, R., Proulex, D., DelaNove, J. and Couture, P., (1988). Effect of bacterial biofilm in intensive Daphnia culture.Aquacul.Engg.,7: 21-38.
  22. Little, B., Wagner, P., Ray, R., Pope, R., and Sheetz, R., (1991). Biofilms: an ESEM evaluation of artifacts introduced during SEM preparation. J. Ind. Microbiol. 8: 213-222.
  23. Milstein, A., Azim, M. E., Wahab, M. A. and Verdegem, M. C. J., (2003). The effects of periphyton, fish and fertilizer dose on biological processes affecting water quality in earthen fish ponds. Environ. Biol. of Fish.,68: 247-260.
  24. Moriarty, D. J. W., (1997). The role of microorganisms in aquaculture ponds.Aquaculture., 151: 333-349.
  25. Odum, W.E., (1970). Utilization of the direct grazing plant detritus food chain by the striped mullet, Mugilcephalus. In: Stebel, H. (Ed.), Marine Food Chain. Otiver and Boyd, London, pp. 222–242.
  26. Peter, V.S. and Peter, M. C. S., (2007). Influence of coconut husk retting on on metabolic, inter renal and thyroid functions in the air-breathing perch, Anabas testudineusBloch. J. Endocrinol. Reprod.,11(2): 62 – 68.
  27. Schroeder, G. L., (1978). Autotrophic and heterotrophic production of microorganisms in intensely manured fish ponds and related fish yields. Aquaculture.,14: 303-325.
  28. Shankar, K. M., Mohan, C. V., Nandeesha, M. C., (1998). Promotion of substrate basedmicrobial biofilm in ponds- a low cost technology to boost fish production.Naga, 21(4): 18-22.
  29. Shrestha, M.V., Knud Hansen, C.F., (1994). Increased attached microorganisms biomass as a management strategy for Nile tilapia (Oreochromisniloticus) production. Aquacult. Eng. 13: 101–108.
  30. Sternstorm, T. A., (1989). Bacterial hydrophobicity an an overall parameter for the measurement of adhesion potential to soil particles.Appl. Environ.Microbial.,55: 142-147.
  31. Umesh, N. R., Shankar, K. M. and Mohan, C. V., (1999). Enhancing growth of Common Carp Rohu and Mozammbique tilapia through plant substrate: the role of bacterial biofilm.Aquacult. International, 7: 251-260.
  32. Van Dam, A. A., Beveridge, M. C. M., Azim, M. E. and Verdegem, M. C. J., (2002). The potential of fish production based on periphyton.Rev. Fish Biol. Fish., 12: 1-31.
  33. Welcomme, R. L., (1972). An evaluation of the Acadja method of fishing as practiced in the coastal lagoons of Dabomey(West Africa). J. Fish. Biol., 4: 39-55.

Global Footprints