Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.4 (2024)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 49 issue 5 (october 2015) : 585-590

Polymorphism analysis of three Chinese indigenous sheep breeds by microsatellite markers

Jun.Yan. Bai, You.Bing.Yang, Yu.Qin.Wang, Xiao.Hui.Zhang, You.Zhi.Pang
1College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471 003, China
Cite article:- Bai Jun.Yan., You.Bing.Yang, Yu.Qin.Wang, Xiao.Hui.Zhang, You.Zhi.Pang (2024). Polymorphism analysis of three Chinese indigenous sheep breeds by microsatellite markers. Indian Journal of Animal Research. 49(5): 585-590. doi: 10.18805/ijar.5566.
In this study, six microsatellite markers were adopted to detect the genetic diversity and analyze the genetic distance of three Chinese indigenous sheep breeds. The results showed that 161 alleles were detected in the three breeds of sheep populations, and the average effective number of alleles, the average polymorphism information content (PIC) of six microsatellite markers in fat-tailed sheep, small tailed han-sheep, Yuxi fat-tailed sheep were 5.8844, 6.3103, 4.8017 and 0.7463, 0.7790, 0.7140 respectively. Five markers were highly polymorphic except marker ILSTS011 which gave moderate polymorphic. Except markers OarFCB48, OarFCB304 and BL1038, the other three microsatellite markers deviated significantly from the Hardy-Weinberg Equilibrium (P
  1. Al-Barzinji Y. M. S., Lababidi., S. Rischkowsky., B. Al-Rawi., A. A. Tibbo., Hassen. M. H. and Baum. M. (2011). Assessing genetic diversity of Hamdani sheep breed in Kurdistan region of Iraq using microsatellite markers. Afr. J. Biotechnol., 10:15109-15116.
  2. Arora,R., Bhatia., S. Yadav, D.K. and Mishra. B.P. (2011). Current genetic profile of sheep breeds/ populations from Northwestern semi arid zone of India. Livest.Sci., 135:193-198.
  3. Botstein,D., White., R.L. Skolnick M. and Davis. R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum.Genet., 2:314-331.
  4. Chen, H.Y., Ma, Y.H. and Ye. S.H. (2007). Microsatellite analysis of genetic diversity of yunnan local sheep breeds. Contemporary Anim Husb, 1:29-30.
  5. Crispim,B.A., Seno., L.O. Egito., A.A. Junior. F.M.V. and Grisolia. A.B. (2014). Application of microsatellite markers for breeding and genetic conservation of herds of pantaneiro sheep. Electronic.J. Biotechnology., 17: 317-321.
  6. Ghazy,A., Mokhtar., S. Eid., M. Amin., A. Elzarei., M. Kizaki. K. and Hashizume. K. (2013). Genetic diversity and distances of three egyptian local sheep breeds using microsatellite markers. Research in Zoology., 3: 1-9.
  7. Gizaw,S., Van Arendonk., J.A. Komen., H. Windig, J.J. and Hanotte O. (2007). Population structure, genetic variation and morphological diversity in indigenous sheep of Ethiopia. Anim.Genet., 38:621-628.
  8. Glowatzki-Mullis, M. L., Muntwyler., J. Bäumle, E. and Gaillard C. (2009). Genetic diversity of Swiss sheep breeds in the focus of conservation research. Anim.Breed.Genet., 126: 164-175.
  9. Maria,S. and Egbert F.K. (2010). Parental reconstruction in rural goat population with microsatellite markers. Ital.J.Anim. Sci., 9:260-264.
  10. Ozerov, M. Y., S.Marzanov., N. Tapio., M. Burabaev., A.A. Marzanova., L.K. Amerkhanov, K.A. and Kantanenen, J. (2008). Genetic features of Kazakh sheep breeds according to microsatellites. Russ. Agr.Sci., 34:45-48.
  11. Soma,P., Kotze., A. Grobler, J.P. and van Wyk, J.B. (2012). South African sheep breeds: Population genetic structure and conservation implications. Small. Ruminant.Res., 103:112-119.
  12. Sun,W., Chang., H. Musa., H.H. Liao., X.J. Chu. M.X. and Kija. J. (2011). Microsatellite-based genetic differentiation and phylogeny of sheep breeds in mongolia sheep group of China. Agr.Sci. China., 10: 1080-1087.
  13. Tian,Y.L., Gao., T.Y. Chen., N.G. Liu., X. Sun., Y. Fu, T. and Li. G.Y. (2009). Analysis of correlation between body size and body weight of yuxi zhiwei sheep. Acta.Agr.Jiangxi. (China), 21:111-113.
  14. Tolone,M., Mastrangelo., S. Rosa. A.J.M. and Portolanoa. B. (2012). Genetic diversity and population structure of Sicilian sheep breeds using microsatellite markers. Small.Ruminant.Res., 102:18-25.
  15. Yang,Z.P., Chang., H. Sun., W. Geng. R.Q. and Mao. Y.J. (2004). The study on polymorphism of 7 sheep icrocatellite markers in sheep(goat) populations.J.Northwest.A .F .University., 32:69-74.
  16. Zhao, S. J., Pang., Y.Z. Deng., W. Lei. X.Q. and Bai. J.Y. (2008). Relationship between blood protein polymorphism and prolificacy of long-tail han sheep in henan province. J.Henan.Agr.Sci( China)., 5:107-110.
  17. Zhao,Y.J., Zhao., E.H. Zhang. N.Y. and Duan. C.W. (2011). Mitochondrial DNA diversity, origin, and phylogenic relationships of three Chinese large-fat-tailed sheep breeds. Trop.Anim.Health.Prod., 43: 1405–1410.

Editorial Board

View all (0)