​​Pathogenicity of Drug-resistant Canine Isolate of Trypanosoma brucei brucei in Rats

DOI: 10.18805/IJAR.B-1359    | Article Id: B-1359 | Page : 718-723
Citation :- ​​Pathogenicity of Drug-resistant Canine Isolate of Trypanosoma brucei brucei in Rats.Indian Journal of Animal Research.2022.(56):718-723
D.C. Anyogu, A.C. Eze, J.N. Omeke, C.F. Obi, N.T. Emejuo, T.A. Nzeakor davinson.anyogu@unn.edu.ng
Address : Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 410002, Enugu, Nigeria.
Submitted Date : 21-03-2021
Accepted Date : 7-01-2022


Background: Trypanosomosis is a neglected tropical disease. Drug resistance in trypanosomosis has been on the increase in recent years. It is presumed that drug resistant trypanosomes are less pathogenic and may be very suitable for rodent models of human African trypanosomosis (HAT). 
Methods: The T. b. brucei used was locally isolated from a dog and characterized by PCR. Drug resistance trait of the isolate was evaluated using diminazine aceturate and isometamidium chloride. Healthy rats were inoculated with the isolate, IP. Some haemato-biochemical parameters were evaluated. Three rats were euthanized on day 70 PI and necropsied. Data generated from the study were analyzed by student’s t-test and significance was accepted at probability, p<0.05. 
Result: The isolate was confirmed to be drug resistant T. b. brucei and caused no mortalities in the infected rats. The low pathogenicity in rats was discussed and the typical CNS lesions of chronic-stage HAT produced by the isolate makes it a suitable candidate for rodent models of HAT.


​Drug resistance Human African trypanosomosis Pathogenicity Rodent model Trypanosoma brucei brucei


  1. Ahmed, H.A., Picozzi, K., Welburn, S.C. and MacLeod, E.T. (2013). A comparative evaluation of PCR-based methods for species-specific determination of African animal trypanosomes in Uganda cattle. Parasites and Vectors. 6: 316.
  2. Aksoy, S., Buscher, P., Lehane, M., Solano, P. and Van Den Abbeele, J. (2017). Human African trypanosomiasis control: Achievements and challenges. PLOS Neglected Tropical Diseases. 11(4): e0005454. 
  3. Cnops, J., Magez, S. and De Trez, C. (2015). Escape mechanisms of African trypanosomes: Why trypanosomiasis is keeping us awake. Parasitology. 142: 417-427.
  4. Cox, A., Tilley, A., McOdimba, F., Fyfe, J., Eisler, M.C., Hide, G. and Welburn, S.C. (2005). A PCR based assay for detection and differentiation of African trypanosome species in blood. Experimental Parasitology. 111: 24-29.
  5. Desquesnes, M. and Davila, A.M.R. (2002). Applications of PCR-based tools for detection and identification of animal trypanosomes: A review and perspectives. Veterinary Parasitology. 109: 213-231.
  6. Desquesnes, M., McLaughlin, G., Zoungrana, A. and Davila, A.M.R. (2001). Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA. International Journal of Parasitology. 31: 610-614.
  7. Egbe-Nwiyi, T.N., Igbokwe, I.O. and Onyeyili, P.A. (2005). Diminazene aceturate resistance on the virulence of Trypanosoma brucei for rats. Journal of Comparative Patholology. 133: 286-288.
  8. Egbe-Nwiyi, T.N., Igbokwe, I.O. and Onyeyili, P.A. (2003). The pathogenicity of diminazene aceturate-resistant Trypanosoma brucei in rats after treatment with the drug. Journal of Comparative Patholology. 128: 188-191.
  9. Eisler, M.C., Brandt, J., Bauer, B., Clausen, P.H., Delespaux, V., Holmes, P.H., et al. (2001). Standardised tests in mice and cattle for the detection of drug resistance in tsetse-transmitted trypanosomes of African domestic cattle. Veterinary Parasitology. 97(3): 171-182.
  10. Galiza, G.J., Garcia, H.A., Assis, A.C., Oliveira, D.M., Pimentel, L.A., Dantas, A.F., Simões, S.V., Teixeira, M.M. and Riet- Correa, F. (2011). High mortality and lesions of the central nervous system in trypanosomosis by Trypanosoma vivax in Brazilian hair sheep. Veterinary Parasitology. 182 (2- 4): 359-63.
  11. Giordani, F., Morrison, L.J., Rowan, T.G., De Koning, H.P. and Barrett, M.P. (2016). The animal trypanosomiases and their chemotherapy: A review. Parasitology. 143: 1862-1889.
  12. Gitonga, P.K., Ndung’u, K., Murilla, G.A., et al. (2017). Differential virulence and tsetse fly transmissibility of Trypanosoma congolense and Trypanosoma brucei strains. Onderstepoort Journal of Veterinary Research. 84(1): e1-e10.
  13. Higgins, T., Beutler, E. and Doumas, B.T. (2008). Measurement of Haemoglobin in Blood. In: Tietz Fundamentals of Clinical Chemistry. [Burtis, C.A., Ashwood, E.R., Bruns, D.E. (Eds.)], 6th ed. Missouri. Saunders Elsevier. 524-525.  
  14. Ihedioha, J.I., Onuma, C.J., Okorie-Kanu, C.O. and Ihedioha, T.E. (2010). Changes in the pathogenicity of relapsed diminazene aceturate (DA)-resistant Trypanosoma brucei brucei as the trypanosomes are transmitted from DA-treated hosts to another set of animals. Comparative Clinical Patholology. 19: 481-486.
  15. Ikede, B.O. and Losos, G.J. (1972). Pathology of the disease in sheep produced experimentally by Trypanosoma brucei. Veterinary Pathology. 9: 278-289.
  16. Keita, M., Bouteille, B., Enanga, B., Vallat, J. and Dumas, M. (1997). Trypanosoma brucei brucei: A long-term model of human African trypanosomiasis in mice, meningoencephalitis, astrocytosis and neurologic disorders. Experimental Parasitology. 85:183-192. 
  17. Kennedy, P.G. (2013). Clinical features, diagnosis and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurology. 12: 186-194.
  18. Masocha, W., Robertson, B., Rottenberg, M.E., et al. (2004). Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei brucei penetration of the blood-brain barrier. Journal of Clinical Investigation. 114: 689-694.
  19. Morrison, L.J. (2011). Parasite-driven pathogenesis in Trypanosoma brucei infections. Parasite Immunology. 33: 448-455.
  20. Naessens, J. (2006). Bovine trypanotolerance: A natural ability to prevent severe anaemia and haemophagocytic syndrome? International Journal of Parasitology. 36: 521-528. 
  21. Ojok, L. Kaeufer-Weiss, I. and Weiss, E. (2001). Bone marrow response to acute and chronic Trypanosoma congolense infection in multimammate rats (Mastomys coucha). Journal of Comparative Pathology. 124: 149-158.
  22. Philip, K.A., Dascombe, M.J., Fraser, P.A. and Pentreath, V.W. (1994). Bloodbrain barrier damage in experimental African trypanosomiasis. Annals of Tropical Medicine and Parasitology. 88(6): 607-616.
  23. Singh, U.A., Kumari, M. and Iyengar, S. (2018). Method for improving the quality of genomic DNA obtained from minute quantities of tissue and blood samples using Chelex 100 resins. Biological Procedures Online. 20: 12.
  24. Soulsby, E.J.L. (1982). Helminths, Arthropods and Protozoa of Domestic Animals (7th edition). Philadelphia. Bailliere Tindall.
  25. Sternberg, J.M. (2004). Human African trypanosomiasis: Clinical presentation and immune response. Parasite Immunology. 26: 469-476.
  26. Stewart, M.L., Burchmore, R.J., Clucas, C., Hertz-Fowler, C., Brooks, K., Tait, A., MacLeod, A., Turner, C.M., de Koning, H.P., Wong, P.E. and Barrett, M.P. (2010). Multiple genetic mechanisms lead to loss of functional TbAT1 expression in drug-resistant trypanosomes. Eukaryotic Cell. 9: 336- 343.
  27. Thrall, M.A. and Weiser, M.G. (2002). Hematology. In: Procedures for Veterinary Technicians Hendrix, C.M. (Ed.) Laboratory. 4th ed. Missouri. Mosby, pp. 29-74.
  28. Turner, C.M. (1990). The use of experimental artefacts in African trypanosome research. Parasitology Today. 6: 14-17.
  29. Vincendeau, P. and Bouteille, B. (2006). Immunology and immunopathology of African trypanosomiasis. Anais da Academia Brasileira de Ciências. 78: 645-665.

Global Footprints