Loading...

​Dominant-genotype Frequency Analysis of Economic Traits Related to SNP Candidate Markers in Three Yak Populations

DOI: 10.18805/IJAR.B-1358    | Article Id: B-1358 | Page : 400-406
Citation :- ​Dominant-genotype Frequency Analysis of Economic Traits Related to SNP Candidate Markers in Three Yak Populations.Indian Journal of Animal Research.2022.(56):400-406
Q. Zhang, Y.J. Cidan, D.Z. Luosang, Z.D. Pingcuo, Y.L. Dawa, X.Y. Chen, W.D. Basang tibetzq@126.com
Address : State Key Laboratory of Barley and Yak Germplasm Researces and Genetics Improvement, Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS), Lhasa Tibet 850000, China.
Submitted Date : 19-03-2021
Accepted Date : 22-06-2021

Abstract

Background: Yak as a unique domestic animal that has extremely important social value and influence on the local culture and economy in the Qinghai-Tibet Plateau. The current study aimed to evaluate the genotype distribution of a series of economic traits (growth, meat quality and lactation) related to single nucleotide polymorphisms (SNP) in three Tibetan yak populations.
Methods: A total of 238 yaks from three populations [Sibu (SB), Chawula (CWL) and Jiali (JL) yaks] including 34 SB, 104 JL and 100 CWL yak individuals were collected. All samples were genotyped for 12 SNP markers by using SNaPshot technology.
Result: All loci had abundant polymorphisms in the three populations, except for the Hesx1_G618C locus. The dominant growth-related genotype was MyoD1_C1710T (C/T), which had the highest frequency in the three Tibetan yak populations. However, the growth-related dominant genotypes at UCP2_T1499C (C/T) and CYP4A11_G4806A (G/A) loci were rare genotypes in the three Tibetan yak populations. Results of Hardy-Weinberg equilibrium (HWE) analysis showed that all sites did not deviate from the HWE within the population. This finding indicated that these populations belonged to a natural one without having been subjected to artificial selection on economic traits. Overall, this study provided valuable reference for the future molecular breeding of yak based on the genotype distribution of economic-trait candidate markers in three yak populations in Tibet.

Keywords

​Economic traits Genotype SNP Tibet yak

References

  1. Cai, X., Mipam, T.D., Zhao, F.F., Sun, L. (2015). SNPs detected in the yak MC4R gene and their association with growth traits. Animal. 9(7): 1097-103.
  2. Cheng, S.Z., Guang-Xin, E., Liu, C.L., Basang, W.D., Zhu, Y.B., et al. (2020). SNP of AHSA2 gene in three cattle breeds using snapshot technology. J Genet. 99: 54.
  3. Colle, M.J., Doumit, M.E. (2017). Effect of extended aging on calpain-1 and -2 activity in beef longissimus lumborum and semimembranosus muscles. Meat Science. 131: 142-145. 
  4. Crispim, A.C., Kelly, M.J., Guimarães, S.E., Fonseca e Silva, F., Fortes, M.R., Wenceslau, R.R., Moore, S. (2015). Multi- Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle. PLoS One. 10(10): e0139906. 
  5. Ding, X.Z., Liang, C.N., Guo, X., Xing, C.F., Bao, P.J., Chu, M., Pei, J., Zhu, X.S., Yan, P. (2012). A novel single nucleotide polymorphism in exon 7 of LPL gene and its association with carcass traits and visceral fat deposition in yak (Bos grunniens) steers. Molecular Biology Reports. 39(1): 669-673. 
  6. El-Komy, S.M., Saleh, A.A., Abd El-Aziz, R.M., El-Magd, M.A. (2021) Association of GH polymorphisms with growth traits in buffaloes. Domestic Animal Endocrinology. 74: 106541. 
  7. Excoffier, L., Lischer, H.E. (2021) Arlequin 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 10(3): 564-567. 
  8. Gao, H., Cao, Y., Xia, H., Zhu, X., Jin, Y. (2020). CYP4A11 is involved in the development of nonalcoholic fatty liver disease via ROS-induced lipid peroxidation and inflammation. International Journal of Molecular Medicine. 45(4): 1121-1129.
  9. Guan, C.Y., Wang, J.K., Chai, Z.X., Wang, H., Xin, J.W., Ji, Q.M. and Zhong, J.C. (2019). Correlation between CYP4A11 gene polymorphisms and growth traits in Maiwa Yak. Genomics and Applied Biology. 39(8): 3475-3481.
  10. Gutierrez-Aguilar, R., Kim, D.H., Woods, S.C., Seeley, R.J. (2011) Expression of new loci associated with obesity in diet- induced obese rats: From genetics to physiology. Obesity (Silver Spring). 20: 306-312.
  11. Hai, D., Chai, Z.X., Zhong, J.C. (2017). Identification of SNPs in GH, GHR and GHRS genes and their association with body measurement traits in Maiwa Yak. Acta Veterinaria et Zootechnica Sinica. 48(4): 605-617.
  12. Hao, J., Chai, Z.X., Wang, J.K., Wang, H., Xin, J.W., Ji, Q.M., Zhong, J.C. (2019). Analysis of UCP gene polymorphism and its genetic effects associated with growth traits in Maiwa yak. Heilongjiang Animal Science and veterinary Medicine. 2019(21): 149-153.
  13. Hodge, B.A., Zhang, X., Gutierrez-Monreal, M.A., Cao, Y., Hammers, D.W., Yao, Z., Wolff, C.A., Du, P., Kemler, D., Judge, A.R., Esser, K.A. (2019). MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. Elife. 8: e43017. 
  14. Huang, X., Chai, Z.X., Wang, H., Ji, Q.M., Xin, J.W., Zhong, J.C. (2019). Association analysis between polymorphism of MyoD1 gene and growth traits in Tibetan Yak. Southwest China Journal of Agricultural Sciences. 32(2): 439-445.
  15. Jurvansuu, J., Zhao, Y., Leung, D.S., Boulaire, J., Yu, Y.H., Ahmed, S., Wang, S. (2008). Transmembrane protein 18 enhances the tropism of neural stem cells for glioma cells. Cancer Research. 68(12): 4614-4622.
  16. Kaminski, B.A., Palmert, M.R. (2008). Genetic control of pubertal timing. Current Opinion in Pediatrics. 20(4): 458-464.
  17. Kim, S., Kim, J.M., Lee, H.J., Lim, J.S., Seong, I.O., Kim, K.H. (2020). Alteration of CYP4A11 expression in renal cell carcinoma: Diagnostic and prognostic implications. Journal of Cancer. 11(6): 1478-1485. 
  18. Krauss, S., Zhang, C.Y., Lowell, B.B. (2005). The mitochondrial uncoupling-protein homologues. Nature Reviews Molecular Cell Biology. 6(3): 248-261.
  19. Liang, Y., Gao, Q., Zhang, Q., Arbab, A.A.I., Li, M., Yang, Z., Karrow, N.A., Mao, Y. (2020). Polymorphisms of the ACSL1 gene influence milk production traits and somatic cell score in Chinese Holstein cows. Animals (Basel). 10(12): 2282. 
  20. Liu, M., Peng, J., Xu, D.Q., Zheng, R., Li, F.E., Li, J.L., Zuo, B., Lei, M.G., Xiong, Y.Z., Deng, C.Y., Jiang, S.W. (2008). Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White x Meishan F2 pig populations. Biochemical Genetics. 46(11-12): 720-732.
  21. Lv, Y., Liang, T., Wang, G., Li, Z. (2018). Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Bioscience Reports. 38(5): BSR20181061. 
  22. Lyu, S., Yang, P., Liu, Y., Song, T., Zhang, Z., Shi, Q., Chen, F., Liu, X., Li, Z., Ru, B., Cai, C., Xie, J., Lei, C., Chen, H., Xu, Z., Wang, E., Huang, Y. (2020). Genetic effects of MOGAT1 gene SNP in growth traits of Chinese cattle. Gene. 769: 145201.
  23. Nie, J., Shao, S., Xia, W., Liu, Z., Yu, C., Li, R., Wang, W., Li, J., Yuan, Y., Rogers, K.M. (2020). Stable isotopes verify geographical origin of yak meat from Qinghai-Tibet plateau. Meat Science.165: 108113. doi: 10.1016/j.meatsci. 2020. 108113.
  24. Niu, X.L., Li, Y.Q., Hu, J., Luo, Y.Z., Guo, S.Z., Yan, W., Yang, S.M. (2015). The mutations in the promoter region of CAPN4 and its effects on carcass and meat quality traits in Yak. Acta Agriculture Boreali-Sinica. 30(2): 28-34.
  25. Oguzkan-Balci, S., Col-Araz, N., Nacak, M., Araz, M., Sabanci, H., Balat, A., Pehlivan, S. (2013). Mitochondrial uncoupling protein 2 (ucp2) gene polymorphisms are associated with childhood obesity and related metabolic disorders. Journal of Pediatric Endocrinology and Metabolism Jpem. 26: 277-283.
  26. Oliveira, B.A.P.D., Pinhel, M.A.D.S., Nicoletti, C.F., Oliveira, C.C.D., Nonino, C.B. (2017). Ucp2 and plin1 expression affects the resting metabolic rate and weight loss on obese patients. Obesity Surgery. 27(2): 343-348.
  27. Park, S. (2012). Excel Microsatellite Toolkit, version 3.1.1. Animal Genomics Lab website. University College, Dublin. 
  28. Talbot, J., Maves, L. (2016). Skeletal muscle fiber type: Using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdisciplinary Reviews-Developmental Biology. 5(4): 518-34.
  29. Ujan, J.A., Zan, L.S., Wang, H.B., Ujan, S.A., Adoligbe, C., Wang, H.C., Biao, S.F. (2011). Lack of an association between a single nucleotide polymorphism in the bovine myogenic determination 1 (MyoD1) gene and meat quality traits in indigenous Chinese cattle breeds. Genetics and Molecular Research. 10(3): 2213-22. 
  30. Wang, M., Qian, L., Li, J., Ming, H., Fang, L., Li, Y., Zhang, M., Xu, Y., Ban, Y., Zhang, W., Zhang, Y., Liu, Y., Wang, N. (2020). GHSR deficiency exacerbates cardiac fibrosis: Role in macrophage inflammasome activation and myofibroblast differentiation. Cardiovascular Research. 116(13): 2091- 2102.
  31. Wang, X., E, G.X., Na, R.S., Liu, C.L., Huang, Y.F. (2021). Single nucleotide polymorphism of cdc37, ahsa1 and stip1 gene in three cattle breeds using snapshot technology. Indian Journal of Animal Research. DOI: 10.18805/IJAR.B-1266.
  32. Wegmann, M.G., Thankamony, A., Roche, E., Hoey, H., Kirk, J., Shaikh, G., Ivarsson, S.A., Söder, O., Dunger, D.B., Juul, A., Jensen, R.B. (2017). The exon3-deleted growth hormone receptor gene polymorphism (d3-GHR) is associated with insulin and spontaneous growth in short SGA children (NESGAS). Growth Hormone and Igf Research. 35: 45-51. 
  33. Widmann, P., Nuernberg, K., Kuehn, C., Weikard, R. (2011). Association of an ACSL1 gene variant with polyunsaturated fatty acids in bovine skeletal muscle. BMC Genetics. 12: 96.
  34. Zhang, B., Shang, P., Tao, Z., Qiangba, Y., Wang, Z., Zhang, H. (2017). Effect of a single nucleotide polymorphism in the growth hormone secretagogue receptor (GHSR) gene on growth rate in pigs. Gene. 634: 68-73. 
  35. Zhang, H., Wang, H.B., Ma, W., Jia, C.J., Ma, X.M., Wu, X.Y., Chu, M., Yan, P., Cheng, S.R., Liang, C.N. (2019). Association analysis of HesxI gene polymorphism and growth traits in polled yak. Journal of Henan Agricultural Science. 48(8): 134-139.
  36. Zhang, H., Zhang, Q.W., Wang, Q., Ma, Y.J., Zhang, Y., Zhao, X.X. (2017). Polymorphism of TMEM-18 gene and its correlation with production traits in Yak. Biotechnology Bulletin. 33(2): 89-96.
  37. Zhao, Z.D., Tian, H.S., Jiang, Y.Y., Shi, B.G., Liu, X., Li, X.P., Wang, D.Z., Chen, J.L., Hu, J. (2019). Polymorphisms of ACSL1 gene promoter and their association analysis with milk quality traits in Yak (Bos grunniens). Journal of Agricultural Biotechnology. 27(9): 1596-1630.

Global Footprints