Loading...

The Protective Effect of Garden Cress Lepidium sativum against Lipopolysaccharide (LPS) Induced Hepatotoxicity in Mice Model

DOI: 10.18805/IJAR.B-1323    | Article Id: B-1323 | Page : 1065-1071
Citation :- The Protective Effect of Garden Cress Lepidium sativum against Lipopolysaccharide (LPS) Induced Hepatotoxicity in Mice Model.Indian Journal of Animal Research.2021.(55):1065-1071
Abdalla A. Sayed, Ali M. Ali, Gamal M. Bekhet asayed@kfu.edu.sa
Address : Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
Submitted Date : 10-09-2020
Accepted Date : 4-01-2021

Abstract

Background: Lepidium sativum (LS) is a very potent and often used as anti-cancer is largely limited due to the dose-related toxic effects. The present study investigated the protective role of LS that can reduce the liver injury induced by LPS.
Methods: Forty white male mice were randomly divided into five groups: the vehicle control group, LPS group, LPS plus LS group, LS pretreated plus LPS group and LS + LPS + LS group. Mice were sacrificed at 2, 4, 8, 16, 24 and 48h. Blood and liver samples were collected for the experimental investigations. Biochemical analysis, histopathological studies and molecular investigation carried out for different groups used. 
Result: Biochemical analysis for serum AST, ALT, LDL and HDL levels were determined to evaluate liver status. Oxidative stress of liver examined through determination of oxidative enzymes. Furthermore, proinflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-4 and IL-10) cytokines were investigated. Histopathological liver sections were examined to show the alterations due to LPS injection. Biochemical analysis showed a significant modulatory effect of LS on the LPS challenged mice. Histopathological studies showed that LPS caused liver alterations, such as necrosis, infiltrations of neutrophils, sinusoid congestion and hepatocellular degeneration in the liver. These histopathological modulations were significant by LS pretreatment. These findings indicate that LS has a significant hepatoprotective effect on LPS-induced liver injury in mice model.

Keywords

Cytokines Lespidum sativum Liver Oxidative stress

References

  1. Akai, S., Uematsu, Y., Tsuneyama, K., Oda, S. and Yokoi, T. (2016). Kupffer cell-mediated exacerbation of methimazole-induced acute liver injury in rats. Journal of Applied Toxicology. 36(5): 702-715. doi: 10.1002/jat.3202.
  2. Al-yahya, M.A., Mossa, J.S., Ageel, A.M. and Rafatullah, S. (1994). Pharmacological and safety evaluation studies on Lepidium sativum L. seeds. Phytomedicine. 1: 155-159.
  3. Araújo Júnior, R.F., Garcia, V.B., Leitão, R.F., Brito, G.A., Miguel Ede, C., Guedes, P.M. and de Araújo A.A. (2012). Aminotriazole attenuated carbon tetrachloride-induced oxidative liver injury in mice. Food and Chemical Toxicology. 50(9): 3073-8.
  4. Bastihalli, T.D., Belur, R.L. and Kamatham, A.N. (2011). Modulatory effect of a-linolenic acid-rich garden cress (Lepidium sativum L.) seed oil on inflammatory mediators in adult albino rats. British Journal of Nutrition. 106: 530-539.
  5. Bos, M.P., Robert, V. and Tommassen, J. (2007). Biogenesis of the gram-negative bacterial outer membrane. Annual Review of Microbiology. 61: 191-214.
  6. Brydon, L., Walker, C., Wawrzyniak, A., Whitehead, D., Okamura, H., Yajima, J., Tsuda, A. and Steptoe, A., (2009). Synergistic effects of psychological and immune stressors on inflammatory cytokine and sickness responses in humans. Brain, Behavior and Immunity. 23: 217-24.
  7. Chand, Y.Y., Srivastav, D.N., Seth, A.K., Vipin, S., Balaraman, R. and Tejas, K.G. (2010). In vivo antioxidant potential of Lepidium sativum seeds in albino rats using cisplastin induced nepherotoxicity. International Journal of Phytomedicine. 2: 292-298.
  8. Chen, S.R., Dai, Y., Zhao, J., Lin, L., Wang, Y. and Wang, Y. (2018). A Mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F. Frontiers in Pharmacology. 9: 104.
  9. Diwakar, B.T., Dutta, P.K., Lokesh, B.R. and Naidu, K.A. (2010). Physicochemical properties of garden cress (Lepidium sativum) seed oil. Journal of the American Oil Chemists’ Society. 87(5): 539-548.
  10. Eghbal, M.A., Taziki, S. and Sattari, M.R. (2013). Protective role of melatonin and taurine against carbamazepine-induced toxicity in freshly isolated rat hepatocytes. International Journal of Morphology. 31(3): 1081-1089. doi: 10.4067/S0717-95022013000300049. 
  11. Ellen, A.F., Zolghadr, B., Driessen, A.M. and Albers, S.V. (2010). Shaping the archaeal cell envelope. Archaea. Article ID 608243; doi:10.1155/2010/608243.
  12. Facciola, S. (1990). Cornucopia-A Source Book of Edible Plants; Kampong Publications: Vista, CA, USA.
  13. Hero, F.S. and Akrayi J.D. (2012). Anti-bacterial activity of Lepidium sativum and Allium porrum extracts and juices against some gram positive and gram negative extracts. Medical Journal of Islamic World Academy of Science. 20: 10-16.
  14. Kim, W.R., Flamm, S.L., Di Bisceglie, A.M. and Bodenheimer, H.C. (2008). Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology. 47: 1363-1370. doi: 10.1002/hep.22109. 
  15. Liu, Y., Chen, H., Wang, J., Zhou, W., Sun, R. and Xia, M. (2015). Association of serum retinoic acid with hepatic steatosis and liver injury in nonalcoholic fatty liver disease. American Journal of Clinical Nutrition. 102: 130-137. doi: 10.3945/ajcn.114.105155. 
  16. Lotze, M.T., Zeh, H.J., Rubartelli, A., Louis, J.S., Andrew, A.A., Newell, R.W., Michael, E.D., Xiaoyan, L., Mahmut, T. and Timothy, B.. (2007). The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunological Reviews. 220(1): 60-81. doi: 10.1111/j.1600-065x.2007.00579.x. 
  17. Maghrani, M., Zeggwah, N., Michel, J. and Eddouks, M. (2005). Antihypertensive effect of Lepidium sativum L. in spontaneously hypertensive rats. Journal of Ethnopharmacology. 100: 193-197.
  18. Mazin, A.Z., Othman, A.S. Baothman, F.S. and Mohamed, K.A. (2019). Amelioration of CCl4-Induced Hepatotoxicity in Rabbits by Lepidium sativum Seeds: Evidence-Based Complementary and Alternative Medicine. 5947234 https://doi.org/10.1155/2019/5947234.
  19. Najeeb, U.R., Malik, H.M., Khalid, M.A. and Anwarul, H.G. (2011). Prokinetic and laxative activities of Lepidium sativum seed extract with species and tissues selective gut stimulatory actions. Journal of Ethanopharmacology. 134: 878-883.
  20. Questi, S., El Rabey, H.A., Balashram, A.S. (2016): The Hypoglycemic and Antioxidant Activity of Cress Seed and Cinnamon on Streptozotocin Induced Diabetes in Male Rats: Evidence-Based Complementary and Alternative Medicine: Volume 2016, Article ID 5614564, 15 pages; http://dx.doi.org/10.1155/2016/5614564.
  21. Ranjani, R.J., John, K., Vidhya, M., Shilpa, P. and Daniel, J.C.N. (2019). Pro-inflammatory cytokine and apoptotic gene mRNA levels against lentogenic and velogenic Newcastle disease virus pathotypes in in vivo and in vitro biological systems. Indian Jurnal of Animal Research. 53(4): 515-522. doi: 10.18805/B-3530.
  22. Reber, L.L., Gillis, C.M., Starkl, P., Jonsson, F., Sibilano, R., Marichal, T., Gaudenzio, N., Berard, M., Rogalla, S., Contag, C.H., Bruhns, P. and Galli, G.S. (2017). Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. Journal of Experimental Medicine. 214: 1249-1258. doi: 10.1084/jem.20161238.
  23. Sahu, S.C. Zheng, J., Graham, L., Chenn, L., Ihrie, J., Yourick, J.J. and Sprando, L.R. (2014). Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. Journal of Applied Toxicology. February 2014 (wileyonlinelibrary.com) DOI 10.1002/jat.2994 
  24. Sayed, A.A. (2019). Lycopene Ameliorate the gentamicin induced nephrotoxicity in white mice model. Indian Journal of Animal Reseach. 10.18805/ijar.B-1233.
  25. Shaw, P.J., Hopfensperger, M.J., Ganey, P.E. and Roth, R.A. (2007) Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha. Toxicological Sciences. 100(1): 259-266. doi: 10.1093/toxsci/kfm218
  26. Sood, S., Yadav, A., Katoch, R., Bhagat, M., Sharma, A., Rahman, S., Verma, P., Rajat, Khursheed, A., Ganai, A. and Sharma, S. (2019). Oxidative stress and clinico-pathological alterations induced by Cryptosporidium parvum infection in a rat model. Indian Journal of Animal Research. 53(11): 1431-1435. 
  27. Su, Y., Zhang, Y., Chena, M., Zhenzhou, J., Lixin, S., Tao, W. and Luyong, Z. (2014). Lipopoly saccharide exposure augments isoniazide-induced liver injury. Journal of Applied Toxicology. 34(12): 1436-1442. doi: 10.1002/jat.2979. 
  28. Tackholm, V. (1974). Student Flora of Egypt, second ed., Cairo University, Cairo, Egypt.
  29. Wang, R., Yang, Z., Zhang, J., Mu, J., Zhou, X. and Zhao, X. (2019). Liver injury induced by carbon tetrachloride in mice is prevented by the antioxidant capacity of Anji white tea polyphenols. Antioxidants. 8: 64. doi: 10.3390/antiox 8030064. 
  30. Weiyi, P., Qingxuan, W. and Qianming, C. (2019). The cytokine network involved in the host immune response to periodontitis: Journal List Int. J. Oral Sci. 11(3): Sep PMC6828663.
  31. Yao, D. and Brownlee, M. (2010). Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes. 59(1): 249-255. doi: 10.2337/db09-0801. 
  32. Zou, W., Roth, R.A. and Ganey, P.E. (2011). Animal models of idiosyncratic, drug-induced liver injury: emphasis on the inflammatory stress hypothesis. Encyclopedia of Drug Metabolism and Interactions. New York: John Wiley and Sons, Inc.

Global Footprints