Indian Journal of Animal Research

  • Chief EditorK.M.L. Pathak

  • Print ISSN 0367-6722

  • Online ISSN 0976-0555

  • NAAS Rating 6.50

  • SJR 0.263

  • Impact Factor 0.5 (2023)

Frequency :
Monthly (January, February, March, April, May, June, July, August, September, October, November and December)
Indexing Services :
Science Citation Index Expanded, BIOSIS Preview, ISI Citation Index, Biological Abstracts, Scopus, AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Indian Journal of Animal Research, volume 55 issue 6 (june 2021) : 697-703

Effect of Biofilm Formation on the Escherichia coli Drug Resistance of Isolates from Pigs in Central China

Jinpeng Li, Qingying Fan, Chenlong Mao, Manyu Jin, Li Yi, Yang Wang
1College of Animal Science and Technology, Henan University of Science and Technology, Luoyang-471000, China.
Cite article:- Li Jinpeng, Fan Qingying, Mao Chenlong, Jin Manyu, Yi Li, Wang Yang (2020). Effect of Biofilm Formation on the Escherichia coli Drug Resistance of Isolates from Pigs in Central China. Indian Journal of Animal Research. 55(6): 697-703. doi: 10.18805/IJAR.B-1304.
Background: Multi-drug resistant Escherichia coli (E. coli) can cause a variety of diseases that lead to considerable economic losses in the swine industry. In the past, the mainstream view believed that most bacterial resistance was caused by planktonic bacteria, but the ability of bacteria to form biofilms was ignored. Here, we isolated and identified 185 strains of E. coli from pigs in central China and analyzed the relationship between their genetics, antibiotic sensitivity and biofilm formation ability.
Methods: First, the isolates were classified according to biofilm formation ability by semi-quantitative staining of crystal violet. Then, Phylogenetic group analysis of isolates by polymerase chain reaction. In addition, E. coli with different biofilm-forming abilities were evaluated for antimicrobial susceptibility in its planktonic and biofilm state. Finally, the drug resistance pattern of the isolates with different biofilm formation capabilities were compared.
Result: most of the collected strains showed biofilm formation ability (87.57%, 162/185). The isolated E. coli with biofilm formation ability were classified into the following groups: A (16.05%, 26/162), B1 (10.49%, 17/162), B2 (33.33%, 54/162) and D (40.12%, 65/162). Simultaneously, the isolated E. coli were classified into the following groups according to the biofilm formation ability: Strong (34.57%, 56/162), Moderate (33.33%, 54/162), Weak (32.10%, 52/162) and Absent (12.43%, 23/162). Compared with the planktonic cells, the isolates showed a significant increase in the resistance rate in the biofilm form. And the isolates of the strong biofilm-forming ability group had a high drug resistance pattern. This study provides data of the drug resistance of pig-derived E. coli with different biofilm-forming abilities and provides a scientific basis for guiding veterinary clinical treatment and disease prevention.
  1. Arciola C.R., Campoccia D., Montanaro L. (2018). Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16: 397-409.
  2. Bassetti M., Righi E. (2015). New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Current Opinion in Critical Care. 21: 402-411.
  3. Chakraborty S., Roychoudhury P., Samanta I., Subudhi P.K., Lalhruaipuii, Das M., De A., Bandyopadhayay S., Joardar S. N., Mandal M., Qureshi A., Dutta T.K. (2020). Molecular detection of biofilm, virulence and antimicrobial resistance associated genes of Salmonella serovars isolated from pig and chicken of Mizoram, India. Indian Journal of Animal Research. 54: 608-613.
  4. Ciofu O., Rojo-Molinero E., Macia M.D., Oliver A. (2017). Antibiotic treatment of biofilm infections. APMIS. 125: 304-319.
  5. De la Torre, E., Colello, R., Fernandez, D., Etcheverria, A., Di Conza, J., Gutkind, G.O., Tapia, M.O., Dieguez, S.N., Soraci, A.L., Padola, N.L. (2015). Multidrug resistance in Escherichia coli carrying integrons isolated from a pig farm with moderate antibiotic use. J Gen Appl Microbiol. 61: 270-273.
  6. Deshpande, N.P., Wilkins, M.R., Mitchell, H.M., Kaakoush, N.O. (2015). Novel genetic markers define a subgroup of pathogenic Escherichia coli strains belonging to the B2 phylogenetic group. FEMS Microbiol Lett. 362.
  7. Frank, K.L., Reichert, E.J., Piper, K.E., Patel, R. (2007). In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates. Antimicrob Agents Chemother, 51, 888-895.
  8. Gao, L., Tan, Y., Zhang, X., Hu, J., Miao, Z., Wei, L., Chai, T. (2015). Emissions of Escherichia coli carrying extended-spectrum beta-lactamase resistance from pig farms to the surrounding environment. Int J Environ Res Public Health. 12: 4203-4213.
  9. Harmsen, M., Yang, L., Pamp, S.J., Tolker-Nielsen, T. (2010). An update on Pseudomonas aeruginosa biofilm formation, tolerance and dispersal. FEMS Immunol Med Microbiol. 59: 253-268.
  10. Hoiby, N., Henneberg, K.A., Wang, H., Stavnsbjerg, C., Bjarnsholt, T., Ciofu, O., Johansen, U.R., Sams, T. (2019). Formation of Pseudomonas aeruginosa inhibition zone during tobramycin disk diffusion is due to transition from planktonic to biofilm mode of growth. Int. J. Antimicrob. Agents. 53: 564-573.
  11. Lalak, A., Wasyl, D., Zajac, M., Skarzynska, M., Hoszowski, A., Samcik, I., Wozniakowski, G., Szulowski, K. (2016). Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Vet Microbiol. 194: 69-73.
  12. Li, B.B., Yi, L., Li, J.P., Gong, S.L., Dong, X., Wang, C., Wang, Y. (2020). Norfloxacin sub-inhibitory concentration affects Streptococcus suis biofilm formation and virulence gene expression. Indian Journal of Animal Research. 54: 342-348.
  13. Liu, Z., Zhang, Z., Yan, H., Li, J., Shi, L. (2015). Isolation and molecular characterization of multidrug-resistant Enterobacteriaceae strains from pork and environmental samples in Xiamen, China. J. Food Prot. 78: 78-88.
  14. Mandell, J.B., Orr, S., Koch, J., Nourie, B., Ma, D., Bonar, D.D., Shah, N., Urish, K.L. (2019). Large variations in clinical antibiotic activity against Staphylococcus aureus biofilms of periprosthetic joint infection isolates. J. Orthop. Res. 37: 1604-1609.
  15. Marchant, M., Moreno, M.A. (2013). Dynamics and diversity of Escherichia coli in animals and system management of the manure on a commercial farrow-to-finish pig farm. Appl. Environ. Microbiol. 79: 853-859.
  16. Nowrouzian, F.L., Wold, A.E., Adlerberth, I. (2005). Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J. Infect. Dis. 191: 1078-1083.
  17. Pandey, P.K., Laxmi, M.S., Kumar, S. (2014). In vitro evaluation of natural and synthetic substrate for biofilm formation and their effect on water qualities. Indian Journal of Animal Research. 48: 585-592.
  18. Pavlickova, S., Klancnik, A., Dolezalova, M., Mozina, S.S., Holko, I. (2017). Antibiotic resistance, virulence factors and biofilm formation ability in Escherichia coli strains isolated from chicken meat and wildlife in the Czech Republic. J. Environ. Sci. Health B. 52: 570-576.
  19. Venkatesan N., Perumal G., Doble M. (2015). Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 10: 1743-1750.
  20. Wang, Y., Liu, B., Li, J., Gong, S., Dong, X., Mao, C., Yi, L. (2019). LuxS/AI-2 system is involved in fluoroquinolones susceptibility in Streptococcus suis through overexpression of efflux pump SatAB. Vet. Microbiol. 233: 154-158.
  21. Wang, Y., Yi, L., Wang, Y., Wang, Y., Cai, Y., Zhao, W., Ding, C. (2016). Isolation, phylogenetic group, drug resistance, biofilm formation and adherence genes of Escherichia coli from poultry in central China. Poult Sci. 95: 2895-2901.
  22. Wang, Y., Yi, L., Zhao, M.L., Wu, J.Q., Wang, M.Y., Cheng, X.C. (2014). Effects of zinc-methionine on growth performance, intestinal flora and immune function in pigeon squabs. British Poultry Science. 55: 403-408.
  23. Wu, Q.J., Jiao, C., Liu, Z.H., Li, S.W., Zhu, D.D., Ma, W.F., Wang, Y.Q., Wang, Y., Wu, X.H. (2019). Effect of glutamine on the intestinal function and health of broilers challenged with Salmonella pullorum. Indian Journal of Animal Research. 53: 1210-1216.
  24. Yi, L., Li, J., Liu, B., Wang, Y. (2019). Advances in research on signal molecules regulating biofilms. World J. Microbiol Biotechnol., 35: 130.
  25. Yim, J., Smith, J.R., Rybak, M.J. (2017). Role of Combination Antimicrobial Therapy for Vancomycin-Resistant Enterococcus faecium Infections: Review of the Current Evidence. Pharmacotherapy. 37: 579-592.

Editorial Board

View all (0)